Let U~ x²(k), a chi-squared distribution with k degrees of freedom. In lecture, we derived the form of the PDF of U to be 1 fv(u) = /u³-¹e-³, u > 0
Let U~ x²(k), a chi-squared distribution with k degrees of freedom. In lecture, we derived the form of the PDF of U to be 1 fv(u) = /u³-¹e-³, u > 0
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
Please show me the question of I and II, thank you so much
![Let U ~ x²(k), a chi-squared distribution with k degrees of freedom. In lecture, we derived
the form of the PDF of U to be
k
fv(u) = 1/2 u 2 e-²₂ u > 0
where is the normalization constant making this function a PDF. Now, let Z ~ N(0, 1)
be independent from U, and define
Fr(t)
=
T
Then T~ t(k), a t distribution with k degrees of freedom. In this exercise, you will derive
the form of the PDF of T following the same type of calculations in lecture.
(i) Let FT be the CDF of the random variable T. Verify that
=
12
Z
√U/k
{1+P
+ P(Z² ≤ U)
¹P (Z² ≤ U)
ift > 0,
ift < 0.
(Hint: consider the event |Z| ≤ |t|√U/k and draw a picture of the PDF of Z.)
(ii) Use the Law of Total Probability to show that
P ( 2² ≤ ²U) = [° F₂² (u) fv(u)du,
<
k
where Fz2 is the CDF of Z2 and fu is the PDF of U.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F33efa0ee-e3c4-4640-bf2a-d63d72536f00%2Fb9772207-cd39-4bce-b8ed-ca497d7e9c16%2Fv3k9gwr_processed.png&w=3840&q=75)
Transcribed Image Text:Let U ~ x²(k), a chi-squared distribution with k degrees of freedom. In lecture, we derived
the form of the PDF of U to be
k
fv(u) = 1/2 u 2 e-²₂ u > 0
where is the normalization constant making this function a PDF. Now, let Z ~ N(0, 1)
be independent from U, and define
Fr(t)
=
T
Then T~ t(k), a t distribution with k degrees of freedom. In this exercise, you will derive
the form of the PDF of T following the same type of calculations in lecture.
(i) Let FT be the CDF of the random variable T. Verify that
=
12
Z
√U/k
{1+P
+ P(Z² ≤ U)
¹P (Z² ≤ U)
ift > 0,
ift < 0.
(Hint: consider the event |Z| ≤ |t|√U/k and draw a picture of the PDF of Z.)
(ii) Use the Law of Total Probability to show that
P ( 2² ≤ ²U) = [° F₂² (u) fv(u)du,
<
k
where Fz2 is the CDF of Z2 and fu is the PDF of U.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)