Let U,V ,W be finite-dimensional F-vector spaces and let T:U → V, S:V→WE linear transformations. Prove that nullity(S • T)- nullity(T ) = dim(im(T )N ker(S) following steps (a)–(c) below. a) LetU:=ker(S-T)andT:=T|u.Prove:im(T').=T(U')=im(T)N ker(S ). b) Prove:ker(T)=ker(T). c) Deduce:nullity(S•T)-nullity(T)=dim(im(T)Nker(S)).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let U,V ,W be finite-dimensional F-vector spaces and let T:U → V, S:V→W be
linear transformations. Prove that nullity(S • T) - nullity(T ) = dim(im(T ) N ker(S))
following steps (a)-(c) below.
a) LetU:=ker(S-T)andT:=T|u.Prove:im(T').=T(U')=im(T)N ker(S ).
b) Prove:ker(T')=ker(T).
c) Deduce:nullity(S•T)-nullity(T)=dim(im(T)nker(S)).
Transcribed Image Text:Let U,V ,W be finite-dimensional F-vector spaces and let T:U → V, S:V→W be linear transformations. Prove that nullity(S • T) - nullity(T ) = dim(im(T ) N ker(S)) following steps (a)-(c) below. a) LetU:=ker(S-T)andT:=T|u.Prove:im(T').=T(U')=im(T)N ker(S ). b) Prove:ker(T')=ker(T). c) Deduce:nullity(S•T)-nullity(T)=dim(im(T)nker(S)).
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Linear Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,