The plane S can be parameterized by r(u, v) = (u, v, 3-u-2v with (u, v) E D, where D is bounded by u = 0, v = 0, and the line >
The plane S can be parameterized by r(u, v) = (u, v, 3-u-2v with (u, v) E D, where D is bounded by u = 0, v = 0, and the line >
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![The plane \( S \) can be parameterized by \(\vec{r}(u, v) = \langle u, v, 3 - u - 2v \rangle\)
with \( (u, v) \in D \), where \( D \) is bounded by \( u = 0 \), \( v = 0 \), and the line [incomplete expression].](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F09d105f3-6c69-4cbc-8997-6988f1733e6f%2Fc220ca9c-49b7-4428-b704-908d74af586a%2F1ilna4o_processed.png&w=3840&q=75)
Transcribed Image Text:The plane \( S \) can be parameterized by \(\vec{r}(u, v) = \langle u, v, 3 - u - 2v \rangle\)
with \( (u, v) \in D \), where \( D \) is bounded by \( u = 0 \), \( v = 0 \), and the line [incomplete expression].
![To evaluate the surface integral of the curl of a vector field \(\mathbf{F}\) over a surface \(S\), we relate it to a double integral over a domain \(D\):
\[
\iint_S \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S} = \iint_D \operatorname{curl}(\mathbf{F}(\mathbf{r}(u, v))) \cdot (\mathbf{r}_u \times \mathbf{r}_v) dA,
\]
where \( \mathbf{r}_u \times \mathbf{r}_v \) represents the cross product of partial derivatives of the parameterization \(\mathbf{r}(u, v)\).
To solve this, we need to determine \(\operatorname{curl}(\mathbf{F})\) and \(\mathbf{r}_u \times \mathbf{r}_v\):
1. The curl of \(\mathbf{F}\) is given by:
\[
\operatorname{curl}(\mathbf{F}) = \langle 1, 2, -1 \rangle
\]
2. The cross product \(\mathbf{r}_u \times \mathbf{r}_v\) is:
\[
\mathbf{r}_u \times \mathbf{r}_v = \langle 1, 2, 1 \rangle
\]
Finally, substitute these into the double integral:
\[
\iint_D \operatorname{curl}(\mathbf{F}(\mathbf{r}(u, v))) \cdot (\mathbf{r}_u \times \mathbf{r}_v) dA = \iint_D 4 \, dA
\]
This integral evaluates to 4 times the area of \(D\), where \(dA\) is the differential area element over the domain \(D\).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F09d105f3-6c69-4cbc-8997-6988f1733e6f%2Fc220ca9c-49b7-4428-b704-908d74af586a%2Ff1meqdr_processed.png&w=3840&q=75)
Transcribed Image Text:To evaluate the surface integral of the curl of a vector field \(\mathbf{F}\) over a surface \(S\), we relate it to a double integral over a domain \(D\):
\[
\iint_S \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S} = \iint_D \operatorname{curl}(\mathbf{F}(\mathbf{r}(u, v))) \cdot (\mathbf{r}_u \times \mathbf{r}_v) dA,
\]
where \( \mathbf{r}_u \times \mathbf{r}_v \) represents the cross product of partial derivatives of the parameterization \(\mathbf{r}(u, v)\).
To solve this, we need to determine \(\operatorname{curl}(\mathbf{F})\) and \(\mathbf{r}_u \times \mathbf{r}_v\):
1. The curl of \(\mathbf{F}\) is given by:
\[
\operatorname{curl}(\mathbf{F}) = \langle 1, 2, -1 \rangle
\]
2. The cross product \(\mathbf{r}_u \times \mathbf{r}_v\) is:
\[
\mathbf{r}_u \times \mathbf{r}_v = \langle 1, 2, 1 \rangle
\]
Finally, substitute these into the double integral:
\[
\iint_D \operatorname{curl}(\mathbf{F}(\mathbf{r}(u, v))) \cdot (\mathbf{r}_u \times \mathbf{r}_v) dA = \iint_D 4 \, dA
\]
This integral evaluates to 4 times the area of \(D\), where \(dA\) is the differential area element over the domain \(D\).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)