The plane S can be parameterized by r(u, v) = (u, v, 3-u-2v with (u, v) E D, where D is bounded by u = 0, v = 0, and the line >

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
The plane \( S \) can be parameterized by \(\vec{r}(u, v) = \langle u, v, 3 - u - 2v \rangle\)

with \( (u, v) \in D \), where \( D \) is bounded by \( u = 0 \), \( v = 0 \), and the line [incomplete expression].
Transcribed Image Text:The plane \( S \) can be parameterized by \(\vec{r}(u, v) = \langle u, v, 3 - u - 2v \rangle\) with \( (u, v) \in D \), where \( D \) is bounded by \( u = 0 \), \( v = 0 \), and the line [incomplete expression].
To evaluate the surface integral of the curl of a vector field \(\mathbf{F}\) over a surface \(S\), we relate it to a double integral over a domain \(D\):

\[
\iint_S \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S} = \iint_D \operatorname{curl}(\mathbf{F}(\mathbf{r}(u, v))) \cdot (\mathbf{r}_u \times \mathbf{r}_v) dA,
\]

where \( \mathbf{r}_u \times \mathbf{r}_v \) represents the cross product of partial derivatives of the parameterization \(\mathbf{r}(u, v)\).

To solve this, we need to determine \(\operatorname{curl}(\mathbf{F})\) and \(\mathbf{r}_u \times \mathbf{r}_v\):

1. The curl of \(\mathbf{F}\) is given by:
   \[
   \operatorname{curl}(\mathbf{F}) = \langle 1, 2, -1 \rangle
   \]

2. The cross product \(\mathbf{r}_u \times \mathbf{r}_v\) is:
   \[
   \mathbf{r}_u \times \mathbf{r}_v = \langle 1, 2, 1 \rangle
   \]

Finally, substitute these into the double integral:

\[
\iint_D \operatorname{curl}(\mathbf{F}(\mathbf{r}(u, v))) \cdot (\mathbf{r}_u \times \mathbf{r}_v) dA = \iint_D 4 \, dA
\]

This integral evaluates to 4 times the area of \(D\), where \(dA\) is the differential area element over the domain \(D\).
Transcribed Image Text:To evaluate the surface integral of the curl of a vector field \(\mathbf{F}\) over a surface \(S\), we relate it to a double integral over a domain \(D\): \[ \iint_S \operatorname{curl}(\mathbf{F}) \cdot d\mathbf{S} = \iint_D \operatorname{curl}(\mathbf{F}(\mathbf{r}(u, v))) \cdot (\mathbf{r}_u \times \mathbf{r}_v) dA, \] where \( \mathbf{r}_u \times \mathbf{r}_v \) represents the cross product of partial derivatives of the parameterization \(\mathbf{r}(u, v)\). To solve this, we need to determine \(\operatorname{curl}(\mathbf{F})\) and \(\mathbf{r}_u \times \mathbf{r}_v\): 1. The curl of \(\mathbf{F}\) is given by: \[ \operatorname{curl}(\mathbf{F}) = \langle 1, 2, -1 \rangle \] 2. The cross product \(\mathbf{r}_u \times \mathbf{r}_v\) is: \[ \mathbf{r}_u \times \mathbf{r}_v = \langle 1, 2, 1 \rangle \] Finally, substitute these into the double integral: \[ \iint_D \operatorname{curl}(\mathbf{F}(\mathbf{r}(u, v))) \cdot (\mathbf{r}_u \times \mathbf{r}_v) dA = \iint_D 4 \, dA \] This integral evaluates to 4 times the area of \(D\), where \(dA\) is the differential area element over the domain \(D\).
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,