Let ü=(u,u)eR², show that T(u1,u2)=(u1+ U2, U̟– 3u2) is a linear transformation.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Problem Statement:**
Let \(\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2\), show that the transformation \(\mathbf{T}(u_1, u_2) = (u_1 + u_2, u_1 - 3u_2)\) is a linear transformation.
**Explanation:**
To prove that \(\mathbf{T}(u_1, u_2)\) is a linear transformation, we need to verify two main properties of linear transformations:
1. **Additivity:** \(\mathbf{T}(\mathbf{u} + \mathbf{v}) = \mathbf{T}(\mathbf{u}) + \mathbf{T}(\mathbf{v})\)
For \(\mathbf{u} = (u_1, u_2)\) and \(\mathbf{v} = (v_1, v_2)\),
\[
\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)
\]
Applying the transformation,
\[
\mathbf{T}(\mathbf{u} + \mathbf{v}) = ((u_1 + v_1) + (u_2 + v_2), (u_1 + v_1) - 3(u_2 + v_2))
\]
Simplifying,
\[
= (u_1 + u_2 + v_1 + v_2, u_1 - 3u_2 + v_1 - 3v_2)
\]
Now check \(\mathbf{T}(\mathbf{u}) + \mathbf{T}(\mathbf{v})\),
\[
\mathbf{T}(\mathbf{u}) = (u_1 + u_2, u_1 - 3u_2)
\]
\[
\mathbf{T}(\mathbf{v}) = (v_1 + v_2, v_1 - 3v_2)
\]
Adding these,
\[
\mathbf{T}(\mathbf{u}) + \mathbf{T}(\mathbf{v}) = (u_1 + u_2 + v_1 + v](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F80a13d8c-5188-4010-ba23-710cc489cc25%2F7565f9d4-a5cc-48e5-8e13-fd22c1439927%2Flob9stu_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Let \(\mathbf{u} = (u_1, u_2) \in \mathbb{R}^2\), show that the transformation \(\mathbf{T}(u_1, u_2) = (u_1 + u_2, u_1 - 3u_2)\) is a linear transformation.
**Explanation:**
To prove that \(\mathbf{T}(u_1, u_2)\) is a linear transformation, we need to verify two main properties of linear transformations:
1. **Additivity:** \(\mathbf{T}(\mathbf{u} + \mathbf{v}) = \mathbf{T}(\mathbf{u}) + \mathbf{T}(\mathbf{v})\)
For \(\mathbf{u} = (u_1, u_2)\) and \(\mathbf{v} = (v_1, v_2)\),
\[
\mathbf{u} + \mathbf{v} = (u_1 + v_1, u_2 + v_2)
\]
Applying the transformation,
\[
\mathbf{T}(\mathbf{u} + \mathbf{v}) = ((u_1 + v_1) + (u_2 + v_2), (u_1 + v_1) - 3(u_2 + v_2))
\]
Simplifying,
\[
= (u_1 + u_2 + v_1 + v_2, u_1 - 3u_2 + v_1 - 3v_2)
\]
Now check \(\mathbf{T}(\mathbf{u}) + \mathbf{T}(\mathbf{v})\),
\[
\mathbf{T}(\mathbf{u}) = (u_1 + u_2, u_1 - 3u_2)
\]
\[
\mathbf{T}(\mathbf{v}) = (v_1 + v_2, v_1 - 3v_2)
\]
Adding these,
\[
\mathbf{T}(\mathbf{u}) + \mathbf{T}(\mathbf{v}) = (u_1 + u_2 + v_1 + v
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

