Let u, v, and w be vectors, and let a be a scalar. Prove the given property. (u + v) · w = u·w + v. w Let = (u1, u2), = (V1, v2), and w - (w1, w2). Then V = (lu1, u2) + (v1, v2)) · (w1, w2) ). (w1, w2) (u + v) · w = = U1W1 + V1W1 + %3D u1W1 + uzw2 + = (u1, u2) · ( (V1, v2) · %3D = u. W + v• w.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let u, v, and w be vectors, and let a be a scalar. Prove the given property.
(u + v) · w = u·w + v. w
Let
(u1, u2), v = (vı1, v2), and w =
(W1, w2). Then
u =
(u + v) · w =
((u1, u2) + (v1, v2) · (w1, w2)
). (w1, w2)
= U1W1 + V1w1 +
- U1W1 + u2w2 +
= (u1, u2) · (
+ (V1, v2) ·
= u· W + v• W.
Transcribed Image Text:Let u, v, and w be vectors, and let a be a scalar. Prove the given property. (u + v) · w = u·w + v. w Let (u1, u2), v = (vı1, v2), and w = (W1, w2). Then u = (u + v) · w = ((u1, u2) + (v1, v2) · (w1, w2) ). (w1, w2) = U1W1 + V1w1 + - U1W1 + u2w2 + = (u1, u2) · ( + (V1, v2) · = u· W + v• W.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Projection
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,