Find the cross products u xv and vxu for the vectors u = = (3,5,0) and v = (0,3, - 6). uxv = (Di+ (Di+ (D k (Simplify your answers.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem Statement:**

Find the cross products \( \mathbf{u} \times \mathbf{v} \) and \( \mathbf{v} \times \mathbf{u} \) for the vectors \( \mathbf{u} = \langle 3, 5, 0 \rangle \) and \( \mathbf{v} = \langle 0, 3, -6 \rangle \).

---

The expression for the cross product \( \mathbf{u} \times \mathbf{v} \) is:

\[
\mathbf{u} \times \mathbf{v} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 5 & 0 \\
0 & 3 & -6 \\
\end{vmatrix}
\]

This expands to:

\[
\mathbf{u} \times \mathbf{v} = (\text{determinant of } 3 \times 3 \text{ matrix})
\]

Evaluating:

1. \( \mathbf{i} \) component: \( | 5 \quad 0 \\ 3 \quad -6 | = (5)(-6) - (0)(3) = -30 \)

2. \( \mathbf{j} \) component: \( | 3 \quad 0 \\ 0 \quad -6 | = (3)(-6) - (0)(0) = -18 \)

3. \( \mathbf{k} \) component: \( | 3 \quad 5 \\ 0 \quad 3 | = (3)(3) - (5)(0) = 9 \)

Substituting back, we get:

\[
\mathbf{u} \times \mathbf{v} = (-30) \mathbf{i} + (-18) \mathbf{j} + 9 \mathbf{k}
\]

So,

\[
\mathbf{u} \times \mathbf{v} = \langle -30, -18, 9 \rangle
\]

---

The expression for the cross product \( \mathbf{v} \times \mathbf{u} \) is the negative of \( \mathbf{u} \times \mathbf{v} \):

\[
\mathbf{v} \times \mathbf{u} = -(\mathbf{u}
Transcribed Image Text:**Problem Statement:** Find the cross products \( \mathbf{u} \times \mathbf{v} \) and \( \mathbf{v} \times \mathbf{u} \) for the vectors \( \mathbf{u} = \langle 3, 5, 0 \rangle \) and \( \mathbf{v} = \langle 0, 3, -6 \rangle \). --- The expression for the cross product \( \mathbf{u} \times \mathbf{v} \) is: \[ \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 5 & 0 \\ 0 & 3 & -6 \\ \end{vmatrix} \] This expands to: \[ \mathbf{u} \times \mathbf{v} = (\text{determinant of } 3 \times 3 \text{ matrix}) \] Evaluating: 1. \( \mathbf{i} \) component: \( | 5 \quad 0 \\ 3 \quad -6 | = (5)(-6) - (0)(3) = -30 \) 2. \( \mathbf{j} \) component: \( | 3 \quad 0 \\ 0 \quad -6 | = (3)(-6) - (0)(0) = -18 \) 3. \( \mathbf{k} \) component: \( | 3 \quad 5 \\ 0 \quad 3 | = (3)(3) - (5)(0) = 9 \) Substituting back, we get: \[ \mathbf{u} \times \mathbf{v} = (-30) \mathbf{i} + (-18) \mathbf{j} + 9 \mathbf{k} \] So, \[ \mathbf{u} \times \mathbf{v} = \langle -30, -18, 9 \rangle \] --- The expression for the cross product \( \mathbf{v} \times \mathbf{u} \) is the negative of \( \mathbf{u} \times \mathbf{v} \): \[ \mathbf{v} \times \mathbf{u} = -(\mathbf{u}
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,