Let U = span{u₁, U₂}and W = span{w₁, W₂} be subspaces of R³ such that 1 2 0,4₂ = 1 1 3 Fina a vector x E UNW such that x = 0 U₁ = and 2 1 W₁ = 0, W₂ = 1 0 -2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( U = \text{span}\{u_1, u_2\} \) and \( W = \text{span}\{w_1, w_2\} \) be subspaces of \( \mathbb{R}^3 \) such that 

\[
u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \quad \text{and} \quad w_1 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, w_2 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}
\]

Find a vector \( x \in U \cap W \) such that \( x \neq 0 \).
Transcribed Image Text:Let \( U = \text{span}\{u_1, u_2\} \) and \( W = \text{span}\{w_1, w_2\} \) be subspaces of \( \mathbb{R}^3 \) such that \[ u_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, u_2 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} \quad \text{and} \quad w_1 = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}, w_2 = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} \] Find a vector \( x \in U \cap W \) such that \( x \neq 0 \).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,