Let u be a solution of the heat equation U, –u = 0 u(0,1)= u(7,t)=0 ; u(x,0)= sin x+sin 2x ; 00 %3D ; t>0 Then. 1: (a) u(x,t)→0 as t→o for all xe (0,7) (b) t'u(x,t)→0 as t→ 0 for all x e (0,7) (c) e'u(x,t) is a bounded function for xe (0, 7),t >0 (d) e'u(x,t)→0 'as t→o for all xe(0,7) 6.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let u be a solution of the heat equation
u, -Uxx
; 0<x<T and t>0
u(0,t)=u(r,t)=0
u(x,0)= sin x+ sin 2x; 0<x<n
; t>0
Then.
1:
(a) u(x,t)→0 as t→o for all x e
(0,7)
(b) t'u(x,t)→0 as t→o for all xe (0,
(c) - e'u(x,t) is a bounded function for xe (0,7),t >0
(d) e"u(x,t)→0 as t→o for all xe (0,7)
Transcribed Image Text:Let u be a solution of the heat equation u, -Uxx ; 0<x<T and t>0 u(0,t)=u(r,t)=0 u(x,0)= sin x+ sin 2x; 0<x<n ; t>0 Then. 1: (a) u(x,t)→0 as t→o for all x e (0,7) (b) t'u(x,t)→0 as t→o for all xe (0, (c) - e'u(x,t) is a bounded function for xe (0,7),t >0 (d) e"u(x,t)→0 as t→o for all xe (0,7)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,