dy dt2 dt d'y 8x = 0 - dt?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question
d² x
dy
3D
dt
dt2
dy
8x = 0
%3D
dt2
¤(t) = e - e' v3t + (c3 - 3c4) sin /3t]
1
-2t
C2e
[(3 c3 + C4) cos
4
3 c4) sin 3t
2t
y(t) = c1 + c2e
+e' (c3 cos 3t + c4 sin v3 t)
¤(t) = cze-24 - e' [(c3 - V3ca) cos v3t + (v3cs + c4) sin /3t]
1
C2e
4
2t
y(t) = c1 + c2e + e'(c3 cos V3t + C4 sin 3t)
%3D
-2t
O x(t) = c1 + c2e¯t + e' (c3 cos 3t + c4 sin v3t)
1
y(t) = ,c2e-4 -e' [(v3c3 + c4) cos 3t + (c3 - V3 c4) sin 3t
1
÷e [(V3 c3 + c4) cos 3t + (c3 – V3 c4) sin v3t
-2t
- V3 c4) sin /3t
4
-2t
O x(t) = c1 + c2e+ e' (c3 cos 3t + c4 sin /3t)
1
1
y(t) = cze-24 – e' [(cs - V3 ca) cos 3t + (v3 c3 + c4) sin v3t]
C2e
2
4.
Transcribed Image Text:d² x dy 3D dt dt2 dy 8x = 0 %3D dt2 ¤(t) = e - e' v3t + (c3 - 3c4) sin /3t] 1 -2t C2e [(3 c3 + C4) cos 4 3 c4) sin 3t 2t y(t) = c1 + c2e +e' (c3 cos 3t + c4 sin v3 t) ¤(t) = cze-24 - e' [(c3 - V3ca) cos v3t + (v3cs + c4) sin /3t] 1 C2e 4 2t y(t) = c1 + c2e + e'(c3 cos V3t + C4 sin 3t) %3D -2t O x(t) = c1 + c2e¯t + e' (c3 cos 3t + c4 sin v3t) 1 y(t) = ,c2e-4 -e' [(v3c3 + c4) cos 3t + (c3 - V3 c4) sin 3t 1 ÷e [(V3 c3 + c4) cos 3t + (c3 – V3 c4) sin v3t -2t - V3 c4) sin /3t 4 -2t O x(t) = c1 + c2e+ e' (c3 cos 3t + c4 sin /3t) 1 1 y(t) = cze-24 – e' [(cs - V3 ca) cos 3t + (v3 c3 + c4) sin v3t] C2e 2 4.
Expert Solution
Step 1

Given that,

d2xdt2+dydt=0d2ydt2-8x=0

Now take the derivative for the first equation with respect to t,

d3dt3x+d2ydt2=0x'''+8x=0

Since d2ydt2=8x.

So for x'''+8x=0 take m=ddt.

Then we get,

m3+8=0m+2m2-2m+4=0

Where m=-2 is one of the solution for the cubic equation now to find the roots for the quadratic equation,

m2-2m+4=0 

If the quadratic is of the form ax2+bx+c=0 then the roots are, x=-b±b2-4ac2a.

So, the roots for m2-2m+4=0 is 

m=2±4-162=1±i232=1±i3

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Chain Rule
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,