Let the rotation matrices be in each of the axes 1. R. 0 cos 0 - sin 0 0 sin0 cos 0 cos 0 0 sin 0 Ry 1 - sin 0 0 cos 0 cos e -sin 0 0 cos 0 R, sin 0 1 Determine the result of rotating the vector (7, 4, 1) first n /3 around the x-axis, then t/ 4 around the y-axis, and finally n/2 around the z-axis.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let the rotation matrices be in each of the axes (Shown in the picture)

Determine the result of rotating the vector (7, 4, 1) first π /3 around the x-axis, then π/ 4 around the y-axis, and finally π/2 around the z-axis.

Note: In the image it is clearer, do not skip any step, to be able to reach the result.

Determine el resultado de rotar el vector (7, 4, 1) primero t/3 alrededor del eje x, luego t/4
alrededor del eje y y finalmente a/2 alrededor del eje z.
Let the rotation matrices be in each of the axes
0.
0 cos 0
0 sin0
R
%3D
- sin 0
cos 0
cos 0
0 sin 0
Ry
1
- sin 0 0 cos 0
cos 0 -sin 0 0
cos 0
R. =
sin 0
%3D
1
Determine the result of rotating the vector (7, 4, 1) first n/3 around the x-axis, then n/ 4 around
the y-axis, and finally n/2 around the z-axis.
Transcribed Image Text:Determine el resultado de rotar el vector (7, 4, 1) primero t/3 alrededor del eje x, luego t/4 alrededor del eje y y finalmente a/2 alrededor del eje z. Let the rotation matrices be in each of the axes 0. 0 cos 0 0 sin0 R %3D - sin 0 cos 0 cos 0 0 sin 0 Ry 1 - sin 0 0 cos 0 cos 0 -sin 0 0 cos 0 R. = sin 0 %3D 1 Determine the result of rotating the vector (7, 4, 1) first n/3 around the x-axis, then n/ 4 around the y-axis, and finally n/2 around the z-axis.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Markov Processes and Markov chain
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,