Let T: R2→R2 be a linear transformation with standard matrix a, where a, and a, are the vectors shown in the figure. Using the figure, draw the image of under the 3 transformation T. Choose the correct graph below. O A. OB. OC. OD. X2 X2 X2 T(-1,3) T(-1,3) a2 a2 a1 a, a a1 T(-1,3) T(-1,3)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
# Linear Transformation and Matrix Multiplication

## Understanding Transformations using a Standard Matrix

Let \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear transformation with a standard matrix 
\[ A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \]
where \(\mathbf{a}_1\) and \(\mathbf{a}_2\) are the vectors shown in the figure.

### Step-by-Step Process to Draw the Image of a Vector under Transformation T

**Given:** 
\[ 
\mathbf{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} 
\]

**Find:** The image of \(\mathbf{v}\) under transformation \(T\) using the matrix \(A\). 

**Using the figure, the vectors are:**
\[ \mathbf{a}_1 \]
\[ \mathbf{a}_2 \]

**Transformation involves matrix multiplication:**
\[ T(\mathbf{v}) = A \mathbf{v} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} \]

### Explanation of Graphs 

Given four choices below, determine which graph correctly represents the image of the vector under the transformation \(T\):

- **Graph A:**
  - Coordinates \(\mathbf{a}_1\), \(\mathbf{a}_2\)
  - Shows transformation \(T\left( \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right)\)

- **Graph B:**
  - Coordinates \(\mathbf{a}_1\), \(\mathbf{a}_2\)
  - Shows transformation \(T\left( \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right)\)

- **Graph C:**
  - Coordinates \(\mathbf{a}_1\), \(\mathbf{a}_2\)
  - Shows transformation \(T\left( \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right)\)

- **Graph D:**
  - Coordinates \(\mathbf{a}_1\), \(\mathbf{a}_
Transcribed Image Text:# Linear Transformation and Matrix Multiplication ## Understanding Transformations using a Standard Matrix Let \( T: \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear transformation with a standard matrix \[ A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \] where \(\mathbf{a}_1\) and \(\mathbf{a}_2\) are the vectors shown in the figure. ### Step-by-Step Process to Draw the Image of a Vector under Transformation T **Given:** \[ \mathbf{v} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} \] **Find:** The image of \(\mathbf{v}\) under transformation \(T\) using the matrix \(A\). **Using the figure, the vectors are:** \[ \mathbf{a}_1 \] \[ \mathbf{a}_2 \] **Transformation involves matrix multiplication:** \[ T(\mathbf{v}) = A \mathbf{v} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} \] ### Explanation of Graphs Given four choices below, determine which graph correctly represents the image of the vector under the transformation \(T\): - **Graph A:** - Coordinates \(\mathbf{a}_1\), \(\mathbf{a}_2\) - Shows transformation \(T\left( \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right)\) - **Graph B:** - Coordinates \(\mathbf{a}_1\), \(\mathbf{a}_2\) - Shows transformation \(T\left( \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right)\) - **Graph C:** - Coordinates \(\mathbf{a}_1\), \(\mathbf{a}_2\) - Shows transformation \(T\left( \begin{bmatrix} -1 \\ 3 \end{bmatrix} \right)\) - **Graph D:** - Coordinates \(\mathbf{a}_1\), \(\mathbf{a}_
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 11 images

Blurred answer
Knowledge Booster
Linear Transformation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,