Let T: M2x2 → P₂ be defined by T A) A basis for the image (range) of T would be: {[][]} O{1, 1, 1, 2²} {[33]} o{0} O{1, x, x²} Ⓒ{1, 2²} {[89]} B) A basis for the kernel of T would be: {[3]} o {0} {[89]} O{1, ²} O{1, 1, 1, ²} {} =a+b+c+dx².
Let T: M2x2 → P₂ be defined by T A) A basis for the image (range) of T would be: {[][]} O{1, 1, 1, 2²} {[33]} o{0} O{1, x, x²} Ⓒ{1, 2²} {[89]} B) A basis for the kernel of T would be: {[3]} o {0} {[89]} O{1, ²} O{1, 1, 1, ²} {} =a+b+c+dx².
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:Let \( T: M_{2 \times 2} \rightarrow P_2 \) be defined by \( T \left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = a + b + c + dx^2 \).
### A) A basis for the image (range) of \( T \) would be:
- \(\begin{Bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} \end{Bmatrix}\)
- \(\{1, 1, 1, x^2\}\)
- \(\begin{Bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \end{Bmatrix}\)
- \(\{0\}\)
- \(\{1, x, x^2\}\)
- **\(\{1, x^2\}\)** (Correct Answer)
- \(\begin{Bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{Bmatrix}\)
### B) A basis for the kernel of \( T \) would be:
- \(\begin{Bmatrix} \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \end{Bmatrix}\)
- \(\{0\}\)
- \(\begin{Bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{Bmatrix}\)
- \(\{1, x^2\}\)
- \(\{1, 1, 1, x^2\}\)
- **\(\{1, x, x^2\}\)** (Correct Answer)
- \(\begin{Bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -1 & 0 \end{bmatrix} \end{Bmatrix}\)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 14 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

