Write v as a linear combination of u and w, if possible, where u = (3, 1) and w=(3,-2). (Enter your answer in terms of u and w. If not possible, enter IMPOSSIBLE.) v = (6, -1) (u+w) V = Need Help? Read It Watch It Viewing Saved Work Revert to Last Response

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Title: Linear Combination of Vectors**

**Linear Combination Problem Statement:**

Given vectors \( \mathbf{u} \), \( \mathbf{w} \), and \( \mathbf{v} \), the objective is to express \( \mathbf{v} \) as a linear combination of \( \mathbf{u} \) and \( \mathbf{w} \), if possible. 

**Given Vectors:**
- \( \mathbf{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \)
- \( \mathbf{w} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \)
- \( \mathbf{v} = \begin{pmatrix} 6 \\ -1 \end{pmatrix} \)

**Task:**
Write \( \mathbf{v} \) as a linear combination of \( \mathbf{u} \) and \( \mathbf{w} \).

**Equation:**
\[ \mathbf{v} = c_1 \mathbf{u} + c_2 \mathbf{w} \]

Where:
- \( \mathbf{v} \): the target vector.
- \( \mathbf{u} \) and \( \mathbf{w} \): the basis vectors.
- \( c_1 \) and \( c_2 \): coefficients to determine.

**Solution Format:**
- Express the solution in terms of the given vectors \( \mathbf{u} \) and \( \mathbf{w} \).

**Instructions:**
1. Use vector addition to find the coefficients \( c_1 \) and \( c_2 \).
2. Verify if the linear combination is possible. If not, state "IMPOSSIBLE".

For assistance:
- Click "Read It" for a detailed textual explanation.
- Click "Watch It" for a visual tutorial.

**Example:**
The problem requires finding constants \( c_1 \) and \( c_2 \) such that:
\[ \mathbf{v} = c_1 \mathbf{u} + c_2 \mathbf{w} \]

Where:
\[ \mathbf{v} = \begin{pmatrix} 6 \\ -1 \end{pmatrix}, \]
\[ \mathbf{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \]
\[ \mathbf
Transcribed Image Text:**Title: Linear Combination of Vectors** **Linear Combination Problem Statement:** Given vectors \( \mathbf{u} \), \( \mathbf{w} \), and \( \mathbf{v} \), the objective is to express \( \mathbf{v} \) as a linear combination of \( \mathbf{u} \) and \( \mathbf{w} \), if possible. **Given Vectors:** - \( \mathbf{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \) - \( \mathbf{w} = \begin{pmatrix} 3 \\ -2 \end{pmatrix} \) - \( \mathbf{v} = \begin{pmatrix} 6 \\ -1 \end{pmatrix} \) **Task:** Write \( \mathbf{v} \) as a linear combination of \( \mathbf{u} \) and \( \mathbf{w} \). **Equation:** \[ \mathbf{v} = c_1 \mathbf{u} + c_2 \mathbf{w} \] Where: - \( \mathbf{v} \): the target vector. - \( \mathbf{u} \) and \( \mathbf{w} \): the basis vectors. - \( c_1 \) and \( c_2 \): coefficients to determine. **Solution Format:** - Express the solution in terms of the given vectors \( \mathbf{u} \) and \( \mathbf{w} \). **Instructions:** 1. Use vector addition to find the coefficients \( c_1 \) and \( c_2 \). 2. Verify if the linear combination is possible. If not, state "IMPOSSIBLE". For assistance: - Click "Read It" for a detailed textual explanation. - Click "Watch It" for a visual tutorial. **Example:** The problem requires finding constants \( c_1 \) and \( c_2 \) such that: \[ \mathbf{v} = c_1 \mathbf{u} + c_2 \mathbf{w} \] Where: \[ \mathbf{v} = \begin{pmatrix} 6 \\ -1 \end{pmatrix}, \] \[ \mathbf{u} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}, \] \[ \mathbf
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,