Let r(t)=r(t)=e¹i+e=¹j+tk. (a) Find the unit tangent, normal and binormal vectors T(t), N(t) and B(t) at t=0. (h) Find

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Could you guide and explain this to me step by step?
### Curvature and Torsion of a Vector Function

Let \(\mathbf{r}(t) = e^{t} \mathbf{i} + e^{-t} \mathbf{j} + t \mathbf{k}\).

#### Task:
(a) Find the unit tangent, normal, and binormal vectors \(\mathbf{T}(t)\), \(\mathbf{N}(t)\), and \(\mathbf{B}(t)\) at \(t = 0\).

(b) Find the curvature at \(t = 0\).

**Explanation and Solution Steps:**

1. **Unit Tangent Vector, \(\mathbf{T}(t)\)**:
   The unit tangent vector is given by:
   \[
   \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}
   \]
   
2. **Unit Normal Vector, \(\mathbf{N}(t)\)**:
   The unit normal vector is given by:
   \[
   \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|}
   \]

3. **Binormal Vector, \(\mathbf{B}(t)\)**:
   The binormal vector is given by:
   \[
   \mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t)
   \]

4. **Curvature, \(\kappa(t)\)**:
   The curvature is given by:
   \[
   \kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}
   \]

### Solution at \(t = 0\):

- **Find \(\mathbf{r}'(t)\), \(\mathbf{r}''(t)\)**:
  \[
  \mathbf{r}'(t) = \frac{d}{dt} (e^{t} \mathbf{i} + e^{-t} \mathbf{j} + t \mathbf{k}) = e^{t} \mathbf{i} - e^{-t} \mathbf{j} + \mathbf{k}
  \]
  \[
  \mathbf{r}''(t) = \frac{d}{dt} \
Transcribed Image Text:### Curvature and Torsion of a Vector Function Let \(\mathbf{r}(t) = e^{t} \mathbf{i} + e^{-t} \mathbf{j} + t \mathbf{k}\). #### Task: (a) Find the unit tangent, normal, and binormal vectors \(\mathbf{T}(t)\), \(\mathbf{N}(t)\), and \(\mathbf{B}(t)\) at \(t = 0\). (b) Find the curvature at \(t = 0\). **Explanation and Solution Steps:** 1. **Unit Tangent Vector, \(\mathbf{T}(t)\)**: The unit tangent vector is given by: \[ \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \] 2. **Unit Normal Vector, \(\mathbf{N}(t)\)**: The unit normal vector is given by: \[ \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|} \] 3. **Binormal Vector, \(\mathbf{B}(t)\)**: The binormal vector is given by: \[ \mathbf{B}(t) = \mathbf{T}(t) \times \mathbf{N}(t) \] 4. **Curvature, \(\kappa(t)\)**: The curvature is given by: \[ \kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3} \] ### Solution at \(t = 0\): - **Find \(\mathbf{r}'(t)\), \(\mathbf{r}''(t)\)**: \[ \mathbf{r}'(t) = \frac{d}{dt} (e^{t} \mathbf{i} + e^{-t} \mathbf{j} + t \mathbf{k}) = e^{t} \mathbf{i} - e^{-t} \mathbf{j} + \mathbf{k} \] \[ \mathbf{r}''(t) = \frac{d}{dt} \
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,