Let R" = {(a,, a, . .. , a) l a, E R}. Show that the mapping o: (a,, Az, ... , a) → (-q,, -a, · . the group R" under componentwise addition. This automorphism is called inversion. Describe the action of o geometrically. -a) is an automorphism of

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let R" = {(a,, a, . .. , a) l a, E R}. Show that the mapping o: (a,,
Az, ... , a) → (-q,, -a, · .
the group R" under componentwise addition. This automorphism is
called inversion. Describe the action of o geometrically.
-a) is an automorphism of
Transcribed Image Text:Let R" = {(a,, a, . .. , a) l a, E R}. Show that the mapping o: (a,, Az, ... , a) → (-q,, -a, · . the group R" under componentwise addition. This automorphism is called inversion. Describe the action of o geometrically. -a) is an automorphism of
Expert Solution
Step 1

Given: n=a1.....,anai
We need to show that the mapping ϕa1,.....,an-a1,.....,-an is an automorphism of the group n. Also, the geometrical action of ϕ needs to be described.

Step 2

It is clear that ϕϕ is the identity, so ϕ has an inverse and must be a bijection. Now, we have -
ϕ0,.....,0=0,.....,0 and a1,....,an-1=-a1,....,-an, so :
ϕa1, . . . , an-1= ϕ-a1, . . . , -an                                 =a1, . . . , an                                 =-a1, . . . , -an-1                                 = ϕa1, . . . , an-1
Finally, 
ϕa1, . . . , an+b1, . . . , bn=ϕa1+b1, . . . , an+bn                                                        =-a1+b1, . . . , -an+bn                                                        = -a1, . . . , -an+-b1, . . . , -bn                                                        =ϕa1, . . . , an+ϕb1, . . . , bn
This proves that ϕ is an automorphism of n under component wise addition.

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,