let p(x) = a0+a1x+a2x2 and  q(x) = b0+b1x+b2x2 be vectors in P2 with inner product = a0b0+a1b1+a2b2 Consider the polynomials in the set {−1+x2,2+x+x2} 1)Show that the polynomials in the set do not form an orthonormal set. 2)Use the Gram-Schmidt orthonormalization process to form an orthonormal set from these polynomials. Keep the order, and show work for the orthogonalization, then normalization. 3)Do the polynomials in the orthonormal set (from question 2) form a basis for P2 ? Why or why not?   i mainly need the answer for 3 but if u can please answer the other 2. also please make it clear what part ur answering

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

let p(x) = a0+a1x+a2xand  q(x) = b0+b1x+b2x2

be vectors in Pwith inner product <p,q> = a0b0+a1b1+a2b2

Consider the polynomials in the set {−1+x2,2+x+x2}

1)Show that the polynomials in the set do not form an orthonormal set.

2)Use the Gram-Schmidt orthonormalization process to form an orthonormal set from these polynomials. Keep the order, and show work for the orthogonalization, then normalization.

3)Do the polynomials in the orthonormal set (from question 2) form a basis for P2 ? Why or why not?

 

i mainly need the answer for 3 but if u can please answer the other 2. also please make it clear what part ur answering 

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 9 images

Blurred answer
Knowledge Booster
Vector Space
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,