Let pand g n=p8ge, be distinct primes. het show that v (^)n.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Topic Video
Question
![Let Pang g be distinct primes. het
Band
n=p8"gel, "show that](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F34c061c7-811d-42a4-9c9e-b840019f7270%2Ff8639dc7-94d3-4eec-9985-f40aad53eb4b%2Fbpk7soc_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Let Pang g be distinct primes. het
Band
n=p8"gel, "show that
![pa+1_1
Lemma 1. Let p = P.
p-1 ·
be a prime and let a E N. Then v(1) = 1, v(pª) = a + 1, and o(pª)
Theorem 2. Suppose that the positive integer n has the prime factorization into distinct primes
ak
n = Pi P2 Pk
a1
...
Then
(1)
v(n) = (a1 +1)(a2 + 1) ·. · (ak +1),
ak+1
Pk
p4 -1 p2+1
a1+1
pt- 1
(2)
-
o (n) =
Pi – 1
P2 – 1
Pk -1
-
Lemma 3. Let p>1 be a prime number and let a > 1. Then
$(p*) = p* – pª=l = p° (1 - -)
a2
· Pk
ak
a1
Pi P2
Theorem 4. Suppose that the positive integer n has the prime factorization n =
Then
ak
$(n) = pª" ( 1 –-)
Pk
P2
Pi
P2
Pk
= n|1 -
P1
1
P2
1
Pk
...](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F34c061c7-811d-42a4-9c9e-b840019f7270%2Ff8639dc7-94d3-4eec-9985-f40aad53eb4b%2Ff3krl5k_processed.jpeg&w=3840&q=75)
Transcribed Image Text:pa+1_1
Lemma 1. Let p = P.
p-1 ·
be a prime and let a E N. Then v(1) = 1, v(pª) = a + 1, and o(pª)
Theorem 2. Suppose that the positive integer n has the prime factorization into distinct primes
ak
n = Pi P2 Pk
a1
...
Then
(1)
v(n) = (a1 +1)(a2 + 1) ·. · (ak +1),
ak+1
Pk
p4 -1 p2+1
a1+1
pt- 1
(2)
-
o (n) =
Pi – 1
P2 – 1
Pk -1
-
Lemma 3. Let p>1 be a prime number and let a > 1. Then
$(p*) = p* – pª=l = p° (1 - -)
a2
· Pk
ak
a1
Pi P2
Theorem 4. Suppose that the positive integer n has the prime factorization n =
Then
ak
$(n) = pª" ( 1 –-)
Pk
P2
Pi
P2
Pk
= n|1 -
P1
1
P2
1
Pk
...
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)