Let p, q, and r represent the following statements: p: Sam had pizza last night. q: Chris finished her homework. r. Pat watched the news this morning. Give a formula (using appropriate symbols) for the following statements: Sam had pizza last night or Chris didn' finish her homework. O png O *pvq OPV -9

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Topic Video
Question

Can someone help with this please?

**Logic Statements Exercise**

**Objective:**
Learn how to translate English statements into logical formulas using appropriate symbols.

**Problem Statement:**
Let \( p \), \( q \), and \( r \) represent the following statements:

- \( p \): Sam had pizza last night.
- \( q \): Chris finished her homework.
- \( r \): Pat watched the news this morning.

**Task:**
Give a formula (using appropriate symbols) for the following statement:
"Sam had pizza last night or Chris didn’t finish her homework."

**Options:**
```
O ~ p ∧ q
O ~ p ∨ q
O p ∧ ~ q
O p ∨ ~ q
O r
```

**Explanation:**

The goal is to correctly represent the English statement "Sam had pizza last night or Chris didn’t finish her homework" using the given logical symbols:
- \( p \): Sam had pizza last night.
- \( q \): Chris finished her homework.
- \( \sim q \): Chris didn’t finish her homework (negation of \( q \)).

The given statement utilizes the logical OR operation (represented by \( \vee \)).

Thus, the correct logical formula is: 
\[ p \vee \sim q \]

Hence, the correct option to select from the choices given is:
```
O p ∨ ~ q
```

**Note:**
The other options (\(\sim p \land q\), \(\sim p \lor q\), \(p \land \sim q\), and \(r\)) do not accurately represent the given English statement.
Transcribed Image Text:**Logic Statements Exercise** **Objective:** Learn how to translate English statements into logical formulas using appropriate symbols. **Problem Statement:** Let \( p \), \( q \), and \( r \) represent the following statements: - \( p \): Sam had pizza last night. - \( q \): Chris finished her homework. - \( r \): Pat watched the news this morning. **Task:** Give a formula (using appropriate symbols) for the following statement: "Sam had pizza last night or Chris didn’t finish her homework." **Options:** ``` O ~ p ∧ q O ~ p ∨ q O p ∧ ~ q O p ∨ ~ q O r ``` **Explanation:** The goal is to correctly represent the English statement "Sam had pizza last night or Chris didn’t finish her homework" using the given logical symbols: - \( p \): Sam had pizza last night. - \( q \): Chris finished her homework. - \( \sim q \): Chris didn’t finish her homework (negation of \( q \)). The given statement utilizes the logical OR operation (represented by \( \vee \)). Thus, the correct logical formula is: \[ p \vee \sim q \] Hence, the correct option to select from the choices given is: ``` O p ∨ ~ q ``` **Note:** The other options (\(\sim p \land q\), \(\sim p \lor q\), \(p \land \sim q\), and \(r\)) do not accurately represent the given English statement.
**Truth Table for Logical Statement**

---

**Task Description:**

Consider the truth table for the following statement:  
\[
(p \lor q) \land r
\]

while assuming that the table begins with the following three columns:

\[
\begin{array}{|c|c|c|}
  \hline
   p & q & r \\
  \hline
  T & T & T \\
  T & T & F \\
  T & F & T \\
  T & F & F \\
  F & T & T \\
  F & T & F \\
  F & F & T \\
  F & F & F \\
  \hline
\end{array}
\]

---

**Instructions:**

Select the correct choice for the full statement,  
\[
(p \lor q) \land r
\]

- ( ) 
  \[
  \begin{array}{|c|c|c|c|}
    \hline
    p & q & r & (p \lor q) \land r \\
    \hline
    T & T & T & T \\
    T & T & F & F \\
    T & F & T & T \\
    T & F & F & F \\
    F & T & T & T \\
    F & T & F & F \\
    F & F & T & F \\
    F & F & F & F \\
    \hline
  \end{array}
  \]

- ( )
  \[
  \begin{array}{|c|c|c|c|}
    \hline
    p & q & r & (p \lor q) \land r \\
    \hline
    T & T & T & T \\
    T & T & F & T \\
    T & F & T & T \\
    T & F & F & T \\
    F & T & T & T \\
    F & T & F & T \\
    F & F & T & F \\
    F & F & F & T \\
    \hline
  \end{array}
  \]

- ( )
  \[
  \begin{array}{|c|c|c|c|}
    \hline
    p &
Transcribed Image Text:**Truth Table for Logical Statement** --- **Task Description:** Consider the truth table for the following statement: \[ (p \lor q) \land r \] while assuming that the table begins with the following three columns: \[ \begin{array}{|c|c|c|} \hline p & q & r \\ \hline T & T & T \\ T & T & F \\ T & F & T \\ T & F & F \\ F & T & T \\ F & T & F \\ F & F & T \\ F & F & F \\ \hline \end{array} \] --- **Instructions:** Select the correct choice for the full statement, \[ (p \lor q) \land r \] - ( ) \[ \begin{array}{|c|c|c|c|} \hline p & q & r & (p \lor q) \land r \\ \hline T & T & T & T \\ T & T & F & F \\ T & F & T & T \\ T & F & F & F \\ F & T & T & T \\ F & T & F & F \\ F & F & T & F \\ F & F & F & F \\ \hline \end{array} \] - ( ) \[ \begin{array}{|c|c|c|c|} \hline p & q & r & (p \lor q) \land r \\ \hline T & T & T & T \\ T & T & F & T \\ T & F & T & T \\ T & F & F & T \\ F & T & T & T \\ F & T & F & T \\ F & F & T & F \\ F & F & F & T \\ \hline \end{array} \] - ( ) \[ \begin{array}{|c|c|c|c|} \hline p &
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer
Knowledge Booster
Research Design Formulation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,