Let G be a connected graph with n ≥ 2 vertices. Let A be the adjacency matrix of G. Prove that the diameter of G is the least number d such that all the non-diagonal entries of the matrix A are positive.

Linear Algebra: A Modern Introduction
4th Edition
ISBN:9781285463247
Author:David Poole
Publisher:David Poole
Chapter3: Matrices
Section3.7: Applications
Problem 69EQ
icon
Related questions
Question
Let G be a connected graph with n ≥ 2 vertices. Let A be the adjacency matrix of G.
Prove that the diameter of G is the least number d such that all the non-diagonal entries
of the matrix A are positive.
Transcribed Image Text:Let G be a connected graph with n ≥ 2 vertices. Let A be the adjacency matrix of G. Prove that the diameter of G is the least number d such that all the non-diagonal entries of the matrix A are positive.
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Recommended textbooks for you
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
College Algebra
College Algebra
Algebra
ISBN:
9781337282291
Author:
Ron Larson
Publisher:
Cengage Learning