Let b1 = and b = E: {61, 62 is a basis for R?. Let T : R? → R² be a linear transformation such that The set B = T(51) = 851 + 2b, and T(52) = 2b1 + 862. (a) The matrix of T relative to the basis B is (T]B =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \(\vec{b}_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}\) and \(\vec{b}_2 = \begin{bmatrix} -1 \\ -2 \end{bmatrix}\). The set \(B = \{\vec{b}_1, \vec{b}_2\}\) is a basis for \(\mathbb{R}^2\). Let \(T: \mathbb{R}^2 \to \mathbb{R}^2\) be a linear transformation such that

\[T(\vec{b}_1) = 8\vec{b}_1 + 2\vec{b}_2 \quad \text{and} \quad T(\vec{b}_2) = 2\vec{b}_1 + 8\vec{b}_2.\]

(a) The matrix of \(T\) relative to the basis \(B\) is

\[
[T]_B = \begin{bmatrix}
\editable{} & \editable{} \\
\editable{} & \editable{}
\end{bmatrix}.
\]
Transcribed Image Text:Let \(\vec{b}_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}\) and \(\vec{b}_2 = \begin{bmatrix} -1 \\ -2 \end{bmatrix}\). The set \(B = \{\vec{b}_1, \vec{b}_2\}\) is a basis for \(\mathbb{R}^2\). Let \(T: \mathbb{R}^2 \to \mathbb{R}^2\) be a linear transformation such that \[T(\vec{b}_1) = 8\vec{b}_1 + 2\vec{b}_2 \quad \text{and} \quad T(\vec{b}_2) = 2\vec{b}_1 + 8\vec{b}_2.\] (a) The matrix of \(T\) relative to the basis \(B\) is \[ [T]_B = \begin{bmatrix} \editable{} & \editable{} \\ \editable{} & \editable{} \end{bmatrix}. \]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,