Let B = {b₁,b2, b3} be a basis of R³ where Find the vector V. b₁ Enter the vector V in the form [C1, C2, C3]: = b₂ = [ 3 Let v be a vector in R³ such that coordinates of v relative to the basis Bare given by 2 -H -3 2 [V] B = b3 = 4 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \(\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}\}\) be a basis of \(\mathbb{R}^3\) where

\[
\mathbf{b_1} = \begin{bmatrix} -1 \\ 5 \\ 3 \end{bmatrix} \quad \mathbf{b_2} = \begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix} \quad \mathbf{b_3} = \begin{bmatrix} 4 \\ 4 \\ -1 \end{bmatrix}
\]

Let \(\mathbf{v}\) be a vector in \(\mathbb{R}^3\) such that coordinates of \(\mathbf{v}\) relative to the basis \(\mathcal{B}\) are given by

\[
[\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix}
\]

Find the vector \(\mathbf{v}\).

Enter the vector \(\mathbf{v}\) in the form \([\mathbf{c_1}, \mathbf{c_2}, \mathbf{c_3}]\):
Transcribed Image Text:Let \(\mathcal{B} = \{\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}\}\) be a basis of \(\mathbb{R}^3\) where \[ \mathbf{b_1} = \begin{bmatrix} -1 \\ 5 \\ 3 \end{bmatrix} \quad \mathbf{b_2} = \begin{bmatrix} 2 \\ 2 \\ 5 \end{bmatrix} \quad \mathbf{b_3} = \begin{bmatrix} 4 \\ 4 \\ -1 \end{bmatrix} \] Let \(\mathbf{v}\) be a vector in \(\mathbb{R}^3\) such that coordinates of \(\mathbf{v}\) relative to the basis \(\mathcal{B}\) are given by \[ [\mathbf{v}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -3 \\ -2 \end{bmatrix} \] Find the vector \(\mathbf{v}\). Enter the vector \(\mathbf{v}\) in the form \([\mathbf{c_1}, \mathbf{c_2}, \mathbf{c_3}]\):
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,