Let B = (1, x, x², x*) be an ordered basis for P3. Find the coordinate vector of 8x – 6x2 – 9x + 3 relative to B.
Let B = (1, x, x², x*) be an ordered basis for P3. Find the coordinate vector of 8x – 6x2 – 9x + 3 relative to B.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
![**Problem Statement:**
Let \( B = (1, x, x^2, x^3) \) be an ordered basis for \( P_3 \). Find the coordinate vector of \( f(x) = -8x^3 - 6x^2 - 9x + 3 \) relative to \( B \).
**Solution:**
To find the coordinate vector of the polynomial \( f(x) = -8x^3 - 6x^2 - 9x + 3 \) relative to the basis \( B = (1, x, x^2, x^3) \), we express \( f(x) \) as a linear combination of the basis elements: \( c_0 \cdot 1 + c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3 \).
Here, the coefficients of \( f(x) \) correspond directly to the basis elements:
- \( c_3 = -8 \) (coefficient of \( x^3 \))
- \( c_2 = -6 \) (coefficient of \( x^2 \))
- \( c_1 = -9 \) (coefficient of \( x \))
- \( c_0 = 3 \) (constant term)
Thus, the coordinate vector of \( f(x) \) relative to \( B \) is:
\[
f_B = \begin{bmatrix} -8 \\ -6 \\ -9 \\ 3 \end{bmatrix}
\]
**Note:** The red 'X' at the bottom left might indicate an error or incorrect response symbol.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5025798a-663c-4f82-a82a-d0677c58328a%2F37400766-143e-4c67-89ec-fe2615ac4975%2Fwt5fs5b_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
Let \( B = (1, x, x^2, x^3) \) be an ordered basis for \( P_3 \). Find the coordinate vector of \( f(x) = -8x^3 - 6x^2 - 9x + 3 \) relative to \( B \).
**Solution:**
To find the coordinate vector of the polynomial \( f(x) = -8x^3 - 6x^2 - 9x + 3 \) relative to the basis \( B = (1, x, x^2, x^3) \), we express \( f(x) \) as a linear combination of the basis elements: \( c_0 \cdot 1 + c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3 \).
Here, the coefficients of \( f(x) \) correspond directly to the basis elements:
- \( c_3 = -8 \) (coefficient of \( x^3 \))
- \( c_2 = -6 \) (coefficient of \( x^2 \))
- \( c_1 = -9 \) (coefficient of \( x \))
- \( c_0 = 3 \) (constant term)
Thus, the coordinate vector of \( f(x) \) relative to \( B \) is:
\[
f_B = \begin{bmatrix} -8 \\ -6 \\ -9 \\ 3 \end{bmatrix}
\]
**Note:** The red 'X' at the bottom left might indicate an error or incorrect response symbol.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)