Let B = {(1, 3), (-2, -2)} and B' = {(-12, 0), (-4, 4)} be bases for R2, and let %3D 4 3 A = 0 2 be the matrix for T: R? - R? relative to B. (a) Find the transition matrix P from B' to B. P= (b) Use the matrices P and A to find [v]g and [T(v)]g, where [v]g = [4 -3]7. %3D [v]s [T(v)]s (c) Find P-1 and A' (the matrix for T relative to B'). p-1= A'= (d) Find [T(v)]g' two ways. [T(v)]s = P-[T(v)l3 [T(v)]g = A'[v]g'

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

Let B = {(1,3), (-2,-2)} and B' = {(-12,0), (-4,4)} be bases for R2, and let 

A=

4 3
0 2

be the matrix for T: R2 -> R2 relative to B

The image presents a problem involving linear algebra and matrix transformations. Here's a transcription suitable for an educational website:

---

**Linear Algebra: Transformations and Change of Basis**

Let's consider:

- **Bases for \( R^2 \):**
  - \( B = \{(1, 3), (-2, -2)\} \)
  - \( B' = \{(-12, 0), (-4, 4)\} \)

- **Matrix \( A \):**
  \[
  A = \begin{bmatrix} 4 & 3 \\ 0 & 2 \end{bmatrix}
  \]
  This is the matrix representation for the transformation \( T: R^2 \to R^2 \) relative to the basis \( B \).

### Tasks:

(a) **Find the Transition Matrix \( P \) from \( B' \) to \( B \).**

- Determine the matrix \( P \):
  \[
  P = \begin{bmatrix} \quad & \quad \\ \quad & \quad \end{bmatrix}
  \]

(b) **Use matrices \( P \) and \( A \) to compute \([v]_B\) and \([T(v)]_B\), where \( [v]_{B'} = [4 \ -3]^T \).**

- First, express \( [v]_B \):
  \[
  [v]_B = \begin{bmatrix} \quad \\ \quad \end{bmatrix}
  \]

- Then, find \([T(v)]_B\):
  \[
  [T(v)]_B = \begin{bmatrix} \quad \\ \quad \end{bmatrix}
  \]

(c) **Find \( P^{-1} \) and \( A' \) (the matrix for \( T \) relative to \( B' \)).**

- Inverse of \( P \):
  \[
  P^{-1} = \begin{bmatrix} \quad & \quad \\ \quad & \quad \end{bmatrix}
  \]

- Matrix \( A' \):
  \[
  A' = \begin{bmatrix} \quad & \quad \\ \quad & \quad \end{bmatrix}
  \]

(d) **Calculate \([T(v)]_{B'}\) in two ways.**

1
Transcribed Image Text:The image presents a problem involving linear algebra and matrix transformations. Here's a transcription suitable for an educational website: --- **Linear Algebra: Transformations and Change of Basis** Let's consider: - **Bases for \( R^2 \):** - \( B = \{(1, 3), (-2, -2)\} \) - \( B' = \{(-12, 0), (-4, 4)\} \) - **Matrix \( A \):** \[ A = \begin{bmatrix} 4 & 3 \\ 0 & 2 \end{bmatrix} \] This is the matrix representation for the transformation \( T: R^2 \to R^2 \) relative to the basis \( B \). ### Tasks: (a) **Find the Transition Matrix \( P \) from \( B' \) to \( B \).** - Determine the matrix \( P \): \[ P = \begin{bmatrix} \quad & \quad \\ \quad & \quad \end{bmatrix} \] (b) **Use matrices \( P \) and \( A \) to compute \([v]_B\) and \([T(v)]_B\), where \( [v]_{B'} = [4 \ -3]^T \).** - First, express \( [v]_B \): \[ [v]_B = \begin{bmatrix} \quad \\ \quad \end{bmatrix} \] - Then, find \([T(v)]_B\): \[ [T(v)]_B = \begin{bmatrix} \quad \\ \quad \end{bmatrix} \] (c) **Find \( P^{-1} \) and \( A' \) (the matrix for \( T \) relative to \( B' \)).** - Inverse of \( P \): \[ P^{-1} = \begin{bmatrix} \quad & \quad \\ \quad & \quad \end{bmatrix} \] - Matrix \( A' \): \[ A' = \begin{bmatrix} \quad & \quad \\ \quad & \quad \end{bmatrix} \] (d) **Calculate \([T(v)]_{B'}\) in two ways.** 1
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Vector Space
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,