2)} and 0 4 A = 2 3 . be the matrix for T: R2 → R? relative to (a) Find the transition matrix P

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

4) PLEASE ANSWER EACH QUESTION, THANKS.

The problem involves linear algebra concepts, specifically changing between bases and applying linear transformations.

**Definitions:**
- Two bases for \( \mathbb{R}^2 \) are given:
  - \( B = \{(1, 3), (-2, -2)\} \)
  - \( B' = \{(-12, 0), (-4, 4)\} \)
- The matrix \( A = \begin{bmatrix} 0 & 4 \\ 2 & 3 \end{bmatrix} \) is provided for the transformation \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \).

**Tasks:**

(a) **Find the transition matrix \( P \) from \( B' \) to \( B \).**

\[ 
P = \begin{bmatrix} 3 & 2 \\ 4 & 0 \end{bmatrix}
\]

(b) **Use the matrices \( P \) and \( A \) to find \([v]_B\) and \([T(v)]_B\):**

- Given \([v]_{B'} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}\)

\[ 
[v]_B = \begin{bmatrix} \boxed{} \\ \boxed{} \end{bmatrix} \rightarrow 
[T(v)]_B = \begin{bmatrix} \boxed{} \\ \boxed{} \end{bmatrix} 
\]

(c) **Find \( P^{-1} \) and \( A' \) (the matrix for \( T \) relative to \( B' \)):**

\[ 
P^{-1} = \begin{bmatrix} \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \end{bmatrix} \rightarrow
A' = \begin{bmatrix} \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \end{bmatrix} 
\]

(d) **Find \([T(v)]_B\) two ways:**

- Using \([T(v)]_B = P^{-1}[T(v)]_B\)

\[ 
[T(v)]_B = \begin{bmatrix} \boxed{} \\ \boxed{} \end{bmatrix} 
\]

- Using \([T(v)]_B = A[v
Transcribed Image Text:The problem involves linear algebra concepts, specifically changing between bases and applying linear transformations. **Definitions:** - Two bases for \( \mathbb{R}^2 \) are given: - \( B = \{(1, 3), (-2, -2)\} \) - \( B' = \{(-12, 0), (-4, 4)\} \) - The matrix \( A = \begin{bmatrix} 0 & 4 \\ 2 & 3 \end{bmatrix} \) is provided for the transformation \( T: \mathbb{R}^2 \rightarrow \mathbb{R}^2 \). **Tasks:** (a) **Find the transition matrix \( P \) from \( B' \) to \( B \).** \[ P = \begin{bmatrix} 3 & 2 \\ 4 & 0 \end{bmatrix} \] (b) **Use the matrices \( P \) and \( A \) to find \([v]_B\) and \([T(v)]_B\):** - Given \([v]_{B'} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}\) \[ [v]_B = \begin{bmatrix} \boxed{} \\ \boxed{} \end{bmatrix} \rightarrow [T(v)]_B = \begin{bmatrix} \boxed{} \\ \boxed{} \end{bmatrix} \] (c) **Find \( P^{-1} \) and \( A' \) (the matrix for \( T \) relative to \( B' \)):** \[ P^{-1} = \begin{bmatrix} \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \end{bmatrix} \rightarrow A' = \begin{bmatrix} \boxed{} & \boxed{} \\ \boxed{} & \boxed{} \end{bmatrix} \] (d) **Find \([T(v)]_B\) two ways:** - Using \([T(v)]_B = P^{-1}[T(v)]_B\) \[ [T(v)]_B = \begin{bmatrix} \boxed{} \\ \boxed{} \end{bmatrix} \] - Using \([T(v)]_B = A[v
Expert Solution
steps

Step by step

Solved in 7 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,