Let a two-degree-of-freedom system be described by the Hamiltonian = 1/ (p² + p ²) + V(x, y) and suppose the potential energy V is a homogenous function of degree -2: V(λx, y) = λ-2V(x, y) > Show that Þ= (xpy - ypx)² + 2(x² + y²)V(x, y) is a second constant of the motion independent of the Hamiltonian (Yoshida, 1987). Therefore, this system is integrable.
Let a two-degree-of-freedom system be described by the Hamiltonian = 1/ (p² + p ²) + V(x, y) and suppose the potential energy V is a homogenous function of degree -2: V(λx, y) = λ-2V(x, y) > Show that Þ= (xpy - ypx)² + 2(x² + y²)V(x, y) is a second constant of the motion independent of the Hamiltonian (Yoshida, 1987). Therefore, this system is integrable.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 27 images