Let a continuous random variable X denote the diameter of a hole drilled in a sheet of metal component. The target diameter is 12.5 mm. Most random disturbances to the process result in larger diameters. Historical data show that the distribution of X can be modeled by a pdf f(x)=20e-20(x-12.5), for x≥12.5. If a component with a diameter greater than 12.60 mm is scrapped. a) What portion of parts is scrapped? b) What portion of parts is between 12.5 and 12.6 mm? c) What is the mean and variance of X?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

Its x-12.5 not expone

### Probability Distribution of Hole Diameters in Metal Sheets

Let a continuous random variable \( X \) denote the diameter of a hole drilled in a sheet of metal component. The target diameter is 12.5 mm. Due to random disturbances in the process, the resulting diameters are often larger. Historical data shows that the distribution of \( X \) can be modeled by a probability density function (pdf):

\[ f(x) = 20e^{-20(x-12.5)}, \quad \text{for} \, x \geq 12.5. \]

If a component with a diameter greater than 12.60 mm is scrapped, the following questions need to be answered:

**a) What portion of parts is scrapped?**

**b) What portion of parts has diameters between 12.5 and 12.6 mm?**

**c) What is the mean and variance of \( X \)?**

### Solutions:

**a) Portion of parts scrapped:**

To determine the portion of parts scrapped (with \( x > 12.60 \) mm), we need to calculate the cumulative distribution function (CDF) from 12.5 to 12.6 mm and subtract it from 1.

\[ P(X > 12.6) = 1 - P(X \leq 12.6) \]

Since the CDF function \( F(x) \) is given by the integral of the pdf \( f(x) \):

\[ P(X \leq 12.6) = \int_{12.5}^{12.6} 20e^{-20(x-12.5)} \, dx \]

Let \( u = x - 12.5 \), then:

\[ P(X \leq 12.6) = \int_{0}^{0.1} 20e^{-20u} \, du \]

Evaluating the integral:

\[ P(X \leq 12.6) = \left[ -e^{-20u} \right]_0^{0.1} = -e^{-2} + e^0 = 1 - e^{-2} \approx 1 - 0.1353 = 0.8647 \]

Thus, the portion of parts scrapped is:

\[ P(X > 12.6) = 1 - 0.8647 = 0.1353 \]

**
Transcribed Image Text:### Probability Distribution of Hole Diameters in Metal Sheets Let a continuous random variable \( X \) denote the diameter of a hole drilled in a sheet of metal component. The target diameter is 12.5 mm. Due to random disturbances in the process, the resulting diameters are often larger. Historical data shows that the distribution of \( X \) can be modeled by a probability density function (pdf): \[ f(x) = 20e^{-20(x-12.5)}, \quad \text{for} \, x \geq 12.5. \] If a component with a diameter greater than 12.60 mm is scrapped, the following questions need to be answered: **a) What portion of parts is scrapped?** **b) What portion of parts has diameters between 12.5 and 12.6 mm?** **c) What is the mean and variance of \( X \)?** ### Solutions: **a) Portion of parts scrapped:** To determine the portion of parts scrapped (with \( x > 12.60 \) mm), we need to calculate the cumulative distribution function (CDF) from 12.5 to 12.6 mm and subtract it from 1. \[ P(X > 12.6) = 1 - P(X \leq 12.6) \] Since the CDF function \( F(x) \) is given by the integral of the pdf \( f(x) \): \[ P(X \leq 12.6) = \int_{12.5}^{12.6} 20e^{-20(x-12.5)} \, dx \] Let \( u = x - 12.5 \), then: \[ P(X \leq 12.6) = \int_{0}^{0.1} 20e^{-20u} \, du \] Evaluating the integral: \[ P(X \leq 12.6) = \left[ -e^{-20u} \right]_0^{0.1} = -e^{-2} + e^0 = 1 - e^{-2} \approx 1 - 0.1353 = 0.8647 \] Thus, the portion of parts scrapped is: \[ P(X > 12.6) = 1 - 0.8647 = 0.1353 \] **
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman