Let 71, 72, 73 be any vectors in a 3-dimensional space. Determine whether the following statements are true or false. You do not have to justify your answer: span(1, U2, U3) = span(302, U3, U1) span(V1, V2, V3) span(v₁ + √2, V2 - V1, V3) If span(7₁, 7₂) = span(7₁, 73), then 72 and 73 are parallel. If 7 = → →

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Vectors and Span in 3D Space**

Let \(\vec{v}_1, \vec{v}_2, \vec{v}_3\) be any vectors in a 3-dimensional space. Determine whether the following statements are true or false. You do not have to justify your answer:

1. \(\text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \text{span}(3\vec{v}_2, -\vec{v}_3, \vec{v}_1)\)

2. \(\text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \text{span}(\vec{v}_1 + \vec{v}_2, \vec{v}_2 - \vec{v}_1, \vec{v}_3)\)

3. If \(\text{span}(\vec{v}_1, \vec{v}_2) = \text{span}(\vec{v}_1, \vec{v}_3)\), then \(\vec{v}_2\) and \(\vec{v}_3\) are parallel.

4. If \(\vec{v}_1\) is a linear combination of \(\vec{v}_2\) and \(\vec{v}_3\), then \(\text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \text{span}(\vec{v}_2, \vec{v}_3)\).

5. If \(\vec{v}_3\) is not a linear combination of \(\vec{v}_1\) and \(\vec{v}_2\), then \(\text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3)\) is strictly larger than \(\text{span}(\vec{v}_1, \vec{v}_2)\).
Transcribed Image Text:**Vectors and Span in 3D Space** Let \(\vec{v}_1, \vec{v}_2, \vec{v}_3\) be any vectors in a 3-dimensional space. Determine whether the following statements are true or false. You do not have to justify your answer: 1. \(\text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \text{span}(3\vec{v}_2, -\vec{v}_3, \vec{v}_1)\) 2. \(\text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \text{span}(\vec{v}_1 + \vec{v}_2, \vec{v}_2 - \vec{v}_1, \vec{v}_3)\) 3. If \(\text{span}(\vec{v}_1, \vec{v}_2) = \text{span}(\vec{v}_1, \vec{v}_3)\), then \(\vec{v}_2\) and \(\vec{v}_3\) are parallel. 4. If \(\vec{v}_1\) is a linear combination of \(\vec{v}_2\) and \(\vec{v}_3\), then \(\text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3) = \text{span}(\vec{v}_2, \vec{v}_3)\). 5. If \(\vec{v}_3\) is not a linear combination of \(\vec{v}_1\) and \(\vec{v}_2\), then \(\text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3)\) is strictly larger than \(\text{span}(\vec{v}_1, \vec{v}_2)\).
Expert Solution
Step 1: First part

Advanced Math homework question answer, step 1, image 1You have put multiple questions without any numbering. So, according to the guidelines, we solve first 3 questions. Please repost it with other parts also.

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,