Let ----0-- -2 = Show that {V₁, V2, V3} forms an orthogonal basis in R³. Express W= as a linear combination of v₁, V2 and v3. 2 -13 -11 3 =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Topic: Orthogonal Bases in Linear Algebra**

Let 

\[
v_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -5 \\ -2 \\ 1 \end{bmatrix}.
\]

Show that \(\{v_1, v_2, v_3\}\) forms an orthogonal basis in \(\mathbb{R}^3\). Express

\[
w = \begin{bmatrix} -13 \\ -11 \\ 3 \end{bmatrix}
\]

as a linear combination of \(v_1, v_2,\) and \(v_3\).
Transcribed Image Text:**Topic: Orthogonal Bases in Linear Algebra** Let \[ v_1 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -5 \\ -2 \\ 1 \end{bmatrix}. \] Show that \(\{v_1, v_2, v_3\}\) forms an orthogonal basis in \(\mathbb{R}^3\). Express \[ w = \begin{bmatrix} -13 \\ -11 \\ 3 \end{bmatrix} \] as a linear combination of \(v_1, v_2,\) and \(v_3\).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,