Lemma 4.2 Let X be a vector space over K and let (·|·) : X × X → K be a scalar product. The following holds true: (N) The mapping ||x||(--) := V (x|x) : X → R is a norm on X. (CS) |(x|y)| < ||1|l(41)||y|l(1) (x, y E X). (P) ||x + y|l?,1) = |æ|l}?1» + ||!y|/{1,) + 23R(x\y) (x, y E X ). (PI) ||r+ y|l/1,) + |x – y|l?1) 2(|||/1,) + Ily|l/1) (x, y E X ). (CS) is called the Cauchy-Schwarz inequality and (PI) is called the parallelogram identity.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

TASK 23

Lemma 4.2 Let X be a vector space over K and let (·|·) : X × X → K be a scalar
product. The following holds true:
(N) The mapping ||x||(--) := /(x|x): X → R is a norm on X.
(CS) |(x\y)| < ||l(1)||y|(-1) (x, y € X ).
(P) ||x+ y|l71-) = |x||?,!:) + ||y/|?,1,) + 2R(x|y) (x,Y E X ).
(PI) ||r + y|l&1,) + |a – yll21) = 2(|||1) + |) (, y € X).
= 2(|a||/21) + lly|l?1,) (x, y e X).
-
(CS) is called the Cauchy-Schwarz inequality and (PI) is called the parallelogram
identity.
Transcribed Image Text:Lemma 4.2 Let X be a vector space over K and let (·|·) : X × X → K be a scalar product. The following holds true: (N) The mapping ||x||(--) := /(x|x): X → R is a norm on X. (CS) |(x\y)| < ||l(1)||y|(-1) (x, y € X ). (P) ||x+ y|l71-) = |x||?,!:) + ||y/|?,1,) + 2R(x|y) (x,Y E X ). (PI) ||r + y|l&1,) + |a – yll21) = 2(|||1) + |) (, y € X). = 2(|a||/21) + lly|l?1,) (x, y e X). - (CS) is called the Cauchy-Schwarz inequality and (PI) is called the parallelogram identity.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,