Learning Goal: To understand the magnetic force on a straight current-carrying wire in a uniform magnetic field. Magnetic fields exert forces on moving charged particles, whether those charges are moving independently or are confined to a current-carrying wire. The magnetic force F on an individual moving charged particle depends on its velocity v and charge q. In the case of a current-carrying wire, many charged particles are simultaneously in motion, so the magnetic force depends on the total current I and the length of the wire L. The size of the magnetic force on a straight wire of length L carrying current I in a uniform magnetic field with strength Bis F = ILB sin(0). Here 0 is the angle between the direction of the current (along the wire) and the direction of the magnetic field. Hence B sin(0) refers to the component of the magnetic field that is perpendicular to the wire, B. Thus this equation can also be written as F = ILB The direction of the magnetic force on the wire can be described using a "right-hand rule." This will be discussed after Part B.
Learning Goal: To understand the magnetic force on a straight current-carrying wire in a uniform magnetic field. Magnetic fields exert forces on moving charged particles, whether those charges are moving independently or are confined to a current-carrying wire. The magnetic force F on an individual moving charged particle depends on its velocity v and charge q. In the case of a current-carrying wire, many charged particles are simultaneously in motion, so the magnetic force depends on the total current I and the length of the wire L. The size of the magnetic force on a straight wire of length L carrying current I in a uniform magnetic field with strength Bis F = ILB sin(0). Here 0 is the angle between the direction of the current (along the wire) and the direction of the magnetic field. Hence B sin(0) refers to the component of the magnetic field that is perpendicular to the wire, B. Thus this equation can also be written as F = ILB The direction of the magnetic force on the wire can be described using a "right-hand rule." This will be discussed after Part B.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Please help with PART C, D and E
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON