→ Laplace Variational Iteration Method Let us consider the following general partial differential equation: Lu(x,t)+ Ru(x,t) + Nu(x,t) = g(x,t), where L (1) R denotes linear operator, N denotes nonlinear operator, and g(x,t) is the source term. The variational iteration method presents a correction functional for (1) in the form: Mats (t) = Bu(t) + 2(t) (Lun (t) + R n (t) + Na(t) = g(1) dr. (2) ог - Un+1(t) = u(t) + [d(x − t) (Lun(t) + Rdx(t) + N (r)-g(1)) dr. (3) Taking Laplace transform of (3), we obtain L{un+1(t) = Lua(t)) + L{{ (t−1)(L™³ un(t) + Run(t) + Nün(t) − g(†) de મ L(Uns(t) = L{un(t)) + L{(c)) L{L (t) + Rün(t) + N Bu(t) − g(t)}. Taking the variation of (4), which is given by 8 (L{un+1(e))) = 8 (L{un(t)}) (DO +8 (L{2(t)) L{L¹³un (t) + Rū₁(t) + Nū,(t) − g(t)}). (5) By using computation of (5), we get 5 (L{un+1(t)}) = 5 (L(x(t)}) + L{λ(t)) & ( L{L™)u(t)}) = 0. (6) Hence, from (6) we get where 1+s™ L{(t)) = 0. -1- 8 (L{L (c)}) = 8 (5L (t)) – sm−¹u₂(0) — =s8 (L{u,(t))). Therefore, we get L(2(t)) Therefore, we have the following iteration algorithm: (m-1) Lun(e)) L{un(t))- Sm Lu(t) + Ru(t) + Nu₁(t) − g(t)} L{un(t)) - =L{un(t)) - L{(t)}L(Run(t) + Nun(t) − g(t)) - (sLun())-su(0) - LR u(t) + Nu(t) - g(t)) (-1) (0)) (0)+(0)+ ++ (m-1) -(0)- LR u,(t) + Nu,(t)-g(t)) Finally, the approximate solution is given by u(x,t) = lim u(x,t)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
This image contains the derivation of the Laplace variational literation method. Help me find the derivation of the Elzaki variational literation method in the same method, please
→ Laplace Variational Iteration Method
Let us consider the following general partial differential equation:
Lu(x,t)+ Ru(x,t) + Nu(x,t) = g(x,t),
where L
(1)
R denotes linear operator, N denotes nonlinear operator, and
g(x,t) is the source term.
The variational iteration method presents a correction functional for (1) in the form:
Mats (t) = Bu(t) + 2(t) (Lun (t) + R n (t) + Na(t) = g(1) dr. (2)
ог
-
Un+1(t) = u(t) + [d(x − t) (Lun(t) + Rdx(t) + N (r)-g(1)) dr. (3)
Taking Laplace transform of (3), we obtain
L{un+1(t) = Lua(t)) + L{{ (t−1)(L™³ un(t) + Run(t) + Nün(t) − g(†) de
મ
L(Uns(t) = L{un(t)) + L{(c)) L{L (t) + Rün(t) + N Bu(t) − g(t)}.
Taking the variation of (4), which is given by
8 (L{un+1(e))) = 8 (L{un(t)})
(DO
+8 (L{2(t)) L{L¹³un (t) + Rū₁(t) + Nū,(t) − g(t)}).
(5)
By using computation of (5), we get
5 (L{un+1(t)}) = 5 (L(x(t)}) + L{λ(t)) & ( L{L™)u(t)}) = 0.
(6)
Hence, from (6) we get
where
1+s™ L{(t)) = 0.
-1-
8 (L{L (c)}) = 8 (5L (t)) – sm−¹u₂(0) —
=s8 (L{u,(t))).
Therefore, we get
L(2(t))
Therefore, we have the following iteration algorithm:
(m-1)
Lun(e)) L{un(t))-
Sm
Lu(t) + Ru(t) + Nu₁(t) − g(t)}
L{un(t))
-
=L{un(t))
-
L{(t)}L(Run(t) + Nun(t) − g(t))
-
(sLun())-su(0) -
LR u(t) + Nu(t) - g(t))
(-1) (0))
(0)+(0)+ ++
(m-1)
-(0)-
LR u,(t) + Nu,(t)-g(t))
Finally, the approximate solution is given by
u(x,t)
= lim u(x,t)
Transcribed Image Text:→ Laplace Variational Iteration Method Let us consider the following general partial differential equation: Lu(x,t)+ Ru(x,t) + Nu(x,t) = g(x,t), where L (1) R denotes linear operator, N denotes nonlinear operator, and g(x,t) is the source term. The variational iteration method presents a correction functional for (1) in the form: Mats (t) = Bu(t) + 2(t) (Lun (t) + R n (t) + Na(t) = g(1) dr. (2) ог - Un+1(t) = u(t) + [d(x − t) (Lun(t) + Rdx(t) + N (r)-g(1)) dr. (3) Taking Laplace transform of (3), we obtain L{un+1(t) = Lua(t)) + L{{ (t−1)(L™³ un(t) + Run(t) + Nün(t) − g(†) de મ L(Uns(t) = L{un(t)) + L{(c)) L{L (t) + Rün(t) + N Bu(t) − g(t)}. Taking the variation of (4), which is given by 8 (L{un+1(e))) = 8 (L{un(t)}) (DO +8 (L{2(t)) L{L¹³un (t) + Rū₁(t) + Nū,(t) − g(t)}). (5) By using computation of (5), we get 5 (L{un+1(t)}) = 5 (L(x(t)}) + L{λ(t)) & ( L{L™)u(t)}) = 0. (6) Hence, from (6) we get where 1+s™ L{(t)) = 0. -1- 8 (L{L (c)}) = 8 (5L (t)) – sm−¹u₂(0) — =s8 (L{u,(t))). Therefore, we get L(2(t)) Therefore, we have the following iteration algorithm: (m-1) Lun(e)) L{un(t))- Sm Lu(t) + Ru(t) + Nu₁(t) − g(t)} L{un(t)) - =L{un(t)) - L{(t)}L(Run(t) + Nun(t) − g(t)) - (sLun())-su(0) - LR u(t) + Nu(t) - g(t)) (-1) (0)) (0)+(0)+ ++ (m-1) -(0)- LR u,(t) + Nu,(t)-g(t)) Finally, the approximate solution is given by u(x,t) = lim u(x,t)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,