• Try different n values, and compare the execution times of two functions. Please compare the time complexity of two functions and explain which function is better when n is large and why this function is better, add your answer as comment at the beginning of lab04.cpp. The sample run: $ g++ lab04.cpp -o lab04. $ ./lab04 Please enter x: 3 Please enter n: 10 88573 The execution time is : 4.7292e-05 88573 The execution time is 5.294e-06 $ ./lab04 Please enter x: 3. Please enter n: 100 13969809805403233721 The execution time is 0.000104452 13969809805403233721 The execution time is : 6.633e-06 $ ./lab04 Please enter x: 3 Please enter n: 1000 $ ./lab04 Please enter x: 3 Please enter n: 10000 $ ./lab04 Please enter x: 3 Please enter n: 100000 Lab Exercise The following C++ program lab04.cpp prints the result and execution times of two functions that calculate the geometric series sum using different algorithms. You are supposed to implement two functions to calculate the geometric sum. #include #include #include #include using namespace std; long long int geom_sum1 (int x, int n); long long int geom_sum2 (int x, int n); int main() { int x = 1; } int n = 1; cout << "Please enter x: "; cin >> x; cout << "Please enter n: "; cin >> n; using clock = chrono::steady_clock; clock::time_point start = clock::now(); cout << geom_sum1(x, n) << endl; clock::time_point end = clock::now(); clock: duration time span = end start; double nseconds = double(time_span.count()) * clock::period: : num clock: : period::den; cout << "The execution time is : " << nseconds << endl; start = clock::now(); cout << geom_sum2(x, n) << endl; end = clock::now(); time_span= end - start; nseconds = double(time_span.count()) * clock::period: : num clock: : period::den; cout << "The execution time is : << nseconds; return 0; long long int geom_sum1 (int x, int n) { } long long int geom_sum2 (int x, int n) { }
• Try different n values, and compare the execution times of two functions. Please compare the time complexity of two functions and explain which function is better when n is large and why this function is better, add your answer as comment at the beginning of lab04.cpp. The sample run: $ g++ lab04.cpp -o lab04. $ ./lab04 Please enter x: 3 Please enter n: 10 88573 The execution time is : 4.7292e-05 88573 The execution time is 5.294e-06 $ ./lab04 Please enter x: 3. Please enter n: 100 13969809805403233721 The execution time is 0.000104452 13969809805403233721 The execution time is : 6.633e-06 $ ./lab04 Please enter x: 3 Please enter n: 1000 $ ./lab04 Please enter x: 3 Please enter n: 10000 $ ./lab04 Please enter x: 3 Please enter n: 100000 Lab Exercise The following C++ program lab04.cpp prints the result and execution times of two functions that calculate the geometric series sum using different algorithms. You are supposed to implement two functions to calculate the geometric sum. #include #include #include #include using namespace std; long long int geom_sum1 (int x, int n); long long int geom_sum2 (int x, int n); int main() { int x = 1; } int n = 1; cout << "Please enter x: "; cin >> x; cout << "Please enter n: "; cin >> n; using clock = chrono::steady_clock; clock::time_point start = clock::now(); cout << geom_sum1(x, n) << endl; clock::time_point end = clock::now(); clock: duration time span = end start; double nseconds = double(time_span.count()) * clock::period: : num clock: : period::den; cout << "The execution time is : " << nseconds << endl; start = clock::now(); cout << geom_sum2(x, n) << endl; end = clock::now(); time_span= end - start; nseconds = double(time_span.count()) * clock::period: : num clock: : period::den; cout << "The execution time is : << nseconds; return 0; long long int geom_sum1 (int x, int n) { } long long int geom_sum2 (int x, int n) { }
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Provide the full C++ code needed for the expected output
![• Try different n values, and compare the execution times of two functions. Please compare the time complexity of two functions and explain which function is better when n is large and why this function is better, add your answer as comment at the beginning of
lab04.cpp.
The sample run:
$ g++ lab04.cpp -o lab04.
$ ./lab04
Please enter x: 3
Please enter n: 10
88573
The execution time is : 4.7292e-05
88573
The execution time is 5.294e-06
$ ./lab04
Please enter x: 3.
Please enter n: 100
13969809805403233721
The execution time is 0.000104452
13969809805403233721
The execution time is : 6.633e-06
$ ./lab04
Please enter x: 3
Please enter n: 1000
$ ./lab04
Please enter x: 3
Please enter n: 10000
$ ./lab04
Please enter x: 3
Please enter n: 100000](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1bfda259-7429-4717-b69c-7067c249bba0%2F00c1b61c-a382-4ffc-a5d0-00b3e0014980%2Fkn8hxsa_processed.png&w=3840&q=75)
Transcribed Image Text:• Try different n values, and compare the execution times of two functions. Please compare the time complexity of two functions and explain which function is better when n is large and why this function is better, add your answer as comment at the beginning of
lab04.cpp.
The sample run:
$ g++ lab04.cpp -o lab04.
$ ./lab04
Please enter x: 3
Please enter n: 10
88573
The execution time is : 4.7292e-05
88573
The execution time is 5.294e-06
$ ./lab04
Please enter x: 3.
Please enter n: 100
13969809805403233721
The execution time is 0.000104452
13969809805403233721
The execution time is : 6.633e-06
$ ./lab04
Please enter x: 3
Please enter n: 1000
$ ./lab04
Please enter x: 3
Please enter n: 10000
$ ./lab04
Please enter x: 3
Please enter n: 100000
![Lab Exercise
The following C++ program lab04.cpp prints the result and execution times of two functions that calculate the geometric series sum using different algorithms. You are supposed to implement two functions to calculate the geometric sum.
#include <iostream>
#include <ctime>
#include <cstdlib>
#include <chrono>
using namespace std;
long long int geom_sum1 (int x, int n);
long long int geom_sum2 (int x, int n);
int main()
{
int x = 1;
}
int n = 1;
cout << "Please enter x: ";
cin >> x;
cout << "Please enter n: ";
cin >> n;
using clock =
chrono::steady_clock;
clock::time_point start = clock::now();
cout << geom_sum1(x, n) << endl;
clock::time_point end = clock::now();
clock: duration time span = end start;
double nseconds = double(time_span.count()) * clock::period: : num clock: : period::den;
cout << "The execution time is : " << nseconds << endl;
start = clock::now();
cout << geom_sum2(x, n) << endl;
end =
clock::now();
time_span= end - start;
nseconds = double(time_span.count()) * clock::period: : num clock: : period::den;
cout << "The execution time is : << nseconds;
return 0;
long long int geom_sum1 (int x, int n)
{
}
long long int geom_sum2 (int x, int n)
{
}](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1bfda259-7429-4717-b69c-7067c249bba0%2F00c1b61c-a382-4ffc-a5d0-00b3e0014980%2F1h44y7j_processed.png&w=3840&q=75)
Transcribed Image Text:Lab Exercise
The following C++ program lab04.cpp prints the result and execution times of two functions that calculate the geometric series sum using different algorithms. You are supposed to implement two functions to calculate the geometric sum.
#include <iostream>
#include <ctime>
#include <cstdlib>
#include <chrono>
using namespace std;
long long int geom_sum1 (int x, int n);
long long int geom_sum2 (int x, int n);
int main()
{
int x = 1;
}
int n = 1;
cout << "Please enter x: ";
cin >> x;
cout << "Please enter n: ";
cin >> n;
using clock =
chrono::steady_clock;
clock::time_point start = clock::now();
cout << geom_sum1(x, n) << endl;
clock::time_point end = clock::now();
clock: duration time span = end start;
double nseconds = double(time_span.count()) * clock::period: : num clock: : period::den;
cout << "The execution time is : " << nseconds << endl;
start = clock::now();
cout << geom_sum2(x, n) << endl;
end =
clock::now();
time_span= end - start;
nseconds = double(time_span.count()) * clock::period: : num clock: : period::den;
cout << "The execution time is : << nseconds;
return 0;
long long int geom_sum1 (int x, int n)
{
}
long long int geom_sum2 (int x, int n)
{
}
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
![Database System Concepts](https://www.bartleby.com/isbn_cover_images/9780078022159/9780078022159_smallCoverImage.jpg)
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
![Starting Out with Python (4th Edition)](https://www.bartleby.com/isbn_cover_images/9780134444321/9780134444321_smallCoverImage.gif)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
![Digital Fundamentals (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780132737968/9780132737968_smallCoverImage.gif)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
![C How to Program (8th Edition)](https://www.bartleby.com/isbn_cover_images/9780133976892/9780133976892_smallCoverImage.gif)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
![Database Systems: Design, Implementation, & Manag…](https://www.bartleby.com/isbn_cover_images/9781337627900/9781337627900_smallCoverImage.gif)
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
![Programmable Logic Controllers](https://www.bartleby.com/isbn_cover_images/9780073373843/9780073373843_smallCoverImage.gif)
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education