KW demand I5 UUI 4. Explain the different voltage control methods [10 A 3-phase line having an impedance of (5 + j20) ohm per phase 6. delivers a load of 30 MW at a p.f.,of 0.8 lag and voltage 33 kV. Determine the capacity of the phase modifier required to be installed at the receiving end if the voltage at the sending end is to be maintained at 33 kV. 4 A 3-phase induction motor delivers 500 HP at an efficiency of 90% when the operating p.f. is 0.8 lag. A loaded synchronous motor with a power consumption of 120 kW is connected in parallel with the induction motor. Calculate the necessary kVA and the operating p.f. of the synchronous motor if the overall p.f. is to be unity. 7

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
icon
Concept explainers
Question

A 3-phase line having an impedance of (5 + £20) ohm per phase delivers a load of 30 MW at a p.f.,of 0.8 lag and voltage 33 kV. Determine the capacity of the phase modifier required to be installed

at the receiving end if the voltage at the sending end is to be maintained at 33 kV.

Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Transmission line parameter
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,