Kolmogorov's law of fragmentation states that the size of an individual particle in a large collection of particles resulting from the fragmentation of a mineral compound will have an approximate lognormal distribution, where a random variable X is said to have a lognormal distribution if log(X) has a normal distribution. The law, which was first noted empirically and then later given a theoretical basis by Kolmogorov, has been applied to a variety of engineering studies. For instance, it has been used in the analysis of the size of randomly chosen gold particles from a collection of gold sand. A less obvious

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Parametric estimation
Kolmogorov's law of fragmentation states that the size of an individual particle
in a large collection of particles resulting from the fragmentation of a mineral compound
will have an approximate lognormal distribution, where a random variable X is said to
have a lognormal distribution if log(X) has a normal distribution. The law, which was
first noted empirically and then later given a theoretical basis by Kolmogorov, has been
applied to a variety of engineering studies. For instance, it has been used in the analysis of
the size of randomly chosen gold particles from a collection of gold sand. A less obvious
application of the law has been to a study of the stress release in earthquake fault zones
(see Lomnitz, C., “Global Tectonics and Earthquake Risk," Developments in Geotectonics,
Elsevier, Amsterdam, 1979).
Suppose that a sample of 10 grains of metallic sand taken from a large sand pile have
respective lengths (in millimeters):
2.2, 3.4, 1.6, 0.8, 2.7, 3.3, 1.6, 2.8, 2.5, 1.9
Estimate the percentage of sand grains in the entire pile whose length is between 2 and 3
mm.
fou
Transcribed Image Text:Kolmogorov's law of fragmentation states that the size of an individual particle in a large collection of particles resulting from the fragmentation of a mineral compound will have an approximate lognormal distribution, where a random variable X is said to have a lognormal distribution if log(X) has a normal distribution. The law, which was first noted empirically and then later given a theoretical basis by Kolmogorov, has been applied to a variety of engineering studies. For instance, it has been used in the analysis of the size of randomly chosen gold particles from a collection of gold sand. A less obvious application of the law has been to a study of the stress release in earthquake fault zones (see Lomnitz, C., “Global Tectonics and Earthquake Risk," Developments in Geotectonics, Elsevier, Amsterdam, 1979). Suppose that a sample of 10 grains of metallic sand taken from a large sand pile have respective lengths (in millimeters): 2.2, 3.4, 1.6, 0.8, 2.7, 3.3, 1.6, 2.8, 2.5, 1.9 Estimate the percentage of sand grains in the entire pile whose length is between 2 and 3 mm. fou
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman