Kayaking is a great example of multiple drag forces. Where a person has to deal with currents in the water and air to propel themselves forward. In this problem, the water is moving at a velocity of 1.7 m/s directly in the direction you are trying to row. When considering this water, the area in contact with the water is .05 m^2, the drag coefficient is 1.02 with normal water density. You are moving at a velocity of 3 m/s, while the air is blowing against you with a velocity of 2.7 m/s (head wind). For the air, you have an area in contact of .5 m^2, and a drag coefficient of 1.75. Normal air density is present. In order to accomplish your time goal, you need a net force propelling you downstream of 175 newtons, how much force are you applying with the paddle to achieve this goal?

icon
Related questions
Question
Kayaking is a great example of multiple drag forces. Where a person has to deal with currents in the water and air to propel themselves forward. In this problem, the water is moving at a velocity of 1.7 m/s directly in the direction you are trying to row. When considering this water, the area in contact with the water is .05 m^2, the drag coefficient is 1.02 with normal water density. You are moving at a velocity of 3 m/s, while the air is blowing against you with a velocity of 2.7 m/s (head wind). For the air, you have an area in contact of .5 m^2, and a drag coefficient of 1.75. Normal air density is present. In order to accomplish your time goal, you need a net force propelling you downstream of 175 newtons, how much force are you applying with the paddle to achieve this goal?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 5 images

Blurred answer