k 35. Let an ER for all n E N. Let Sk Σ An. n=1 a) Then An converges if and only if {Sk} converges. n=1 b) Then An converges if and only if {S} is bounded. n=1 c) If E an diverges, then lim Sk = 0. n=1 d) All of the above k 36. Let an > 0 for all n E N. Let Sk = > an. n=1 a) Then an converges if and only if {Sk} converges. n=1 b) Then E an converges if and only if {Sk} is bounded. n=1 c) If E an diverges, then lim Sk = 0. n=1 d) All of the above

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Choose the best answer

k
35. Let an ER for all n E N. Let Sk
Σ
An.
n=1
a) Then
An converges if and only if {Sk} converges.
n=1
b) Then
An converges if and only if {S} is bounded.
n=1
c) If E an diverges, then lim Sk = 0.
n=1
d) All of the above
k
36. Let an > 0 for all n E N. Let Sk = > an.
n=1
a) Then an converges if and only if {Sk} converges.
n=1
b) Then E an converges if and only if {Sk} is bounded.
n=1
c) If E an diverges, then lim Sk
= 0.
n=1
d) All of the above
Transcribed Image Text:k 35. Let an ER for all n E N. Let Sk Σ An. n=1 a) Then An converges if and only if {Sk} converges. n=1 b) Then An converges if and only if {S} is bounded. n=1 c) If E an diverges, then lim Sk = 0. n=1 d) All of the above k 36. Let an > 0 for all n E N. Let Sk = > an. n=1 a) Then an converges if and only if {Sk} converges. n=1 b) Then E an converges if and only if {Sk} is bounded. n=1 c) If E an diverges, then lim Sk = 0. n=1 d) All of the above
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,