java]    Write a two-dimensional transformation library by implementing the following API: public class PolygonTransform { // Returns a new array object that is an exact copy of the given array. // The given array is not mutated. public static double[] copy(double[] array) // Scales the polygon by the factor alpha. public static void scale(double[] x, double[] y, double alpha) // Translates the polygon by (dx, dy). public static void translate(double[] x, double[] y, double dx, double dy) // Rotates the polygon theta degrees counterclockwise, about the origin. public static void rotate(double[] x, double[] y, double theta) // Tests each of the API methods by directly calling them. public static void main(String[] args)

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
100%

[java]    Write a two-dimensional transformation library by implementing the following API:

public class PolygonTransform { // Returns a new array object that is an exact copy of the given array. // The given array is not mutated. public static double[] copy(double[] array) // Scales the polygon by the factor alpha. public static void scale(double[] x, double[] y, double alpha) // Translates the polygon by (dx, dy). public static void translate(double[] x, double[] y, double dx, double dy) // Rotates the polygon theta degrees counterclockwise, about the origin. public static void rotate(double[] x, double[] y, double theta) // Tests each of the API methods by directly calling them. public static void main(String[] args) }
1. Polygon transform
polygon is defiıned by its sequence of vertices (xo, y o), (x 1, y 1), (x 2, Y 2), .... In Java, we will represent a polygon by storing the x- and y-
Write a library of static methods that performs various geometric transforms on polygons. Mathematically, a
coordinates of the vertices in two parallel arrays x[] and y[].
(1, 2)
(0, 1)
// Represents the polygon with vertices (0, 0), (1, 0), (1, 2), (0, 1).
double x[ ]
double y[]
{0, 1, 1, о };
{0, о, 2, 1 };
%3D
(0, 0)
(1, 0)
Three useful geometric transforms are scale, translate and rotate.
o Scale the coordinates of each vertex (x i, Y i) by a factor a.
Xi = a X¡
yi = a y
o Translate each vertex (x , Y ) by a given offset (dx, dy).
X; = X¡ + dx
Yi = Yi + dy
o Rotate each vertex (x ;, y ) by 0 degrees counterclockwise, around the origin.
X¡ = Xj Cos 0– y sin 0
Yi = Y cos e + x¡ sin 0
Transcribed Image Text:1. Polygon transform polygon is defiıned by its sequence of vertices (xo, y o), (x 1, y 1), (x 2, Y 2), .... In Java, we will represent a polygon by storing the x- and y- Write a library of static methods that performs various geometric transforms on polygons. Mathematically, a coordinates of the vertices in two parallel arrays x[] and y[]. (1, 2) (0, 1) // Represents the polygon with vertices (0, 0), (1, 0), (1, 2), (0, 1). double x[ ] double y[] {0, 1, 1, о }; {0, о, 2, 1 }; %3D (0, 0) (1, 0) Three useful geometric transforms are scale, translate and rotate. o Scale the coordinates of each vertex (x i, Y i) by a factor a. Xi = a X¡ yi = a y o Translate each vertex (x , Y ) by a given offset (dx, dy). X; = X¡ + dx Yi = Yi + dy o Rotate each vertex (x ;, y ) by 0 degrees counterclockwise, around the origin. X¡ = Xj Cos 0– y sin 0 Yi = Y cos e + x¡ sin 0
Note that the transformation methods scale(), translate() and rotate() mutate the polygons. Here are some example test cases (tests
for copy () are not shown):
// Scales polygon by the factor 2.
StdDraw.setScale(-5.0, +5.0);
double[] x = { 0, 1, 1, 0 };
double[] y = { 0, 0, 2, 1 };
double alpha
StdDraw.setPenColor(StdDraw.RED);
StdDraw.polygon(x, y);
scale (x, y, alpha);
StdDraw.setPenColor(StdDraw.BLUE);
StdDraw.polygon(x, y);
|// Translates polygon by (2, 1).
StdDraw.setScale(-5.0, +5.0);
double[] x =
double[] y = { 0, 0, 2, 1 };
double dx = 2.0, dy
StdDraw.setPenColor(StdDraw.RED);
StdDraw.polygon(x, y);
translate(x, y, dx, dy);
StdDraw.setPenColor(StdDraw.BLUE);
StdDraw.polygon(x, y);
|// Rotates polygon 45 degrees.
StdDraw.setScale(-5.0, +5.0);
double[] x = { 0, 1, 1, 0 };
double[] y = { 0, 0, 2, 1 };
double theta = 45. 0;
StdDraw.setPenColor(StdDraw.RED);
StdDraw.polygon(x, y);
rotate(x, y, theta);
StdDraw.setPenColor(StdDraw.BLUE);
StdDraw.polygon(x, y);
{ 0, 1, 1, 0 };
= 2.0;
= 1.0;
(0, 0)
(0, 0)
(0, 0)
Transcribed Image Text:Note that the transformation methods scale(), translate() and rotate() mutate the polygons. Here are some example test cases (tests for copy () are not shown): // Scales polygon by the factor 2. StdDraw.setScale(-5.0, +5.0); double[] x = { 0, 1, 1, 0 }; double[] y = { 0, 0, 2, 1 }; double alpha StdDraw.setPenColor(StdDraw.RED); StdDraw.polygon(x, y); scale (x, y, alpha); StdDraw.setPenColor(StdDraw.BLUE); StdDraw.polygon(x, y); |// Translates polygon by (2, 1). StdDraw.setScale(-5.0, +5.0); double[] x = double[] y = { 0, 0, 2, 1 }; double dx = 2.0, dy StdDraw.setPenColor(StdDraw.RED); StdDraw.polygon(x, y); translate(x, y, dx, dy); StdDraw.setPenColor(StdDraw.BLUE); StdDraw.polygon(x, y); |// Rotates polygon 45 degrees. StdDraw.setScale(-5.0, +5.0); double[] x = { 0, 1, 1, 0 }; double[] y = { 0, 0, 2, 1 }; double theta = 45. 0; StdDraw.setPenColor(StdDraw.RED); StdDraw.polygon(x, y); rotate(x, y, theta); StdDraw.setPenColor(StdDraw.BLUE); StdDraw.polygon(x, y); { 0, 1, 1, 0 }; = 2.0; = 1.0; (0, 0) (0, 0) (0, 0)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Knowledge Booster
Adjacency Matrix
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education