Java Code... With following Binary Node and Binary Tree class need help making a Red Black Tree with the Insert and Remove Functions (Unsure how can work the way rotations work for Black Trees as well as whole identification of a Red or Black Node and how to automatically set that when a node is inserted or removed from a Red Black Tree). Must have Red Black Tree Inherit from the Binary Tree and override the Insert and Remove functions... can edit or modify BinNode class to make it work as provided. The Trees should be specific for strings  public class BinNode { private String data; private BinNode left; private BinNode right; private int height; //height field public BinNode(){ data = ""; left = null; right = null; } public int getHeight() { return height; } public void setHeight(int height) { this.height = height; } public BinNode(String d){ data = d; left = null; right = null; } public void setData(String d){ this.data = d; } public String getData(){ return this.data; } public void setLeft(BinNode l){ this.left = l; } public BinNode getLeft(){ return this.left; } public void setRight(BinNode r){ this.right = r; } public BinNode getRight(){ return this.right; } }     public class BinaryTree { private BinNode root; private BinNode curr; /* Function to traverse right */ public void goRight() { this.curr = this.curr.getRight(); } public BinaryTree() { root = new BinNode(); curr = new BinNode(); } public BinNode getRoot(){ return this.root; } /* Function to check if tree is empty */ public boolean isEmpty() { return this.root == null; } /* Functions to insert data */ public void insert(String data) { this.root = insert(this.root, data); } //done /* Function to insert data recursively */ private BinNode insert(BinNode node, String data) { if (node == null) node = new BinNode(data); else { int i = node.getData().compareTo(data); if (i < 0) { // Go right node.setRight(insert(node.getRight(), data)); } else if (i >= 0) { // Go left node.setLeft(insert(node.getLeft(), data)); } // write this! } return node; } /* Function to count number of nodes */ public int countNodes() { return countNodes(this.root); } /* Function to count number of nodes recursively */ private int countNodes(BinNode r) { if (r == null) { return 0; // If the current node is null, there are no nodes to count. } int leftCount = countNodes(r.getLeft()); // Count nodes in the left subtree int rightCount = countNodes(r.getRight()); // Count nodes in the right subtree // Add 1 to count the current node itself return 1 + leftCount + rightCount; } /* Function to search for an element */ public BinNode search(String val) { return search(this.root, val); } /* Function to search for an element recursively */ private BinNode search(BinNode r, String val) { // Base case: If the current node is null, the value is not found. if (r == null) { return null; } int comparison = val.compareTo(r.getData()); if (comparison < 0) { // Value is smaller, so search in the left subtree. return search(r.getLeft(), val); } else if (comparison > 0) { // Value is larger, so search in the right subtree. return search(r.getRight(), val); } else { // Value is equal to the current node's data, so it's found. //this.curr = r; return r; } } /* Function for inorder traversal */ public void inorder() { inorder(this.root); } private void inorder(BinNode r) { if (r != null) { inorder(r.getLeft()); System.out.print(r.getData() +" "); inorder(r.getRight()); } } /* Function for preorder traversal */ public void preorder() { preorder(root); } private void preorder(BinNode r) { if (r != null) { System.out.print(r.getData() +" "); preorder(r.getLeft()); preorder(r.getRight()); } } /* Function for postorder traversal */ public void postorder() { postorder(root); } private void postorder(BinNode r) { if (r != null) { postorder(r.getLeft()); postorder(r.getRight()); System.out.print(r.getData() +" "); } } // find the in-order successor of a given node public BinNode findInorderSuccessor(BinNode node) { BinNode current = node.getRight(); while (current.getLeft() != null) { current = current.getLeft(); } return current; } //Remove function public void remove(String key) { // Find the node to be removed and its parent BinNode parent = null; BinNode n = this.root; while (n != null && !n.getData().equals(key)) { parent = n; if (key.compareTo(n.getData()) < 0) { n = n.getLeft(); } else { n = n.getRight(); } } if (n == null) { // Key not found, nothing to remove return; } // Case 1: Node with no children if (n.getLeft() == null && n.getRight() == null) { if (parent == null) { // Removing the root node this.root = null; } else if (parent.getLeft() == n) { parent.setLeft(null); } else { parent.setRight(null); } } // Case 2: Node with one child else if (n.getLeft() == null || n.getRight() == null) { BinNode child = (n.getLeft() != null) ? n.getLeft() : n.getRight(); if (n == this.root) { this.root = child; } else if (parent.getLeft() == n) { parent.setLeft(child); } else { parent.setRight(child); } } // Case 3: Node with two children else { BinNode successor = findInorderSuccessor(n); n.setData(successor.getData()); remove(successor.getData()); // Recursively remove the successor } } }

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

Java Code...

With following Binary Node and Binary Tree class need help making a Red Black Tree with the Insert and Remove Functions (Unsure how can work the way rotations work for Black Trees as well as whole identification of a Red or Black Node and how to automatically set that when a node is inserted or removed from a Red Black Tree). Must have Red Black Tree Inherit from the Binary Tree and override the Insert and Remove functions... can edit or modify BinNode class to make it work as provided.

The Trees should be specific for strings 

public class BinNode
{
private String data;
private BinNode left;
private BinNode right;

private int height; //height field


public BinNode(){
data = "";
left = null;
right = null;
}

public int getHeight() {
return height;
}

public void setHeight(int height) {
this.height = height;
}
public BinNode(String d){
data = d;
left = null;
right = null;
}

public void setData(String d){
this.data = d;
}
public String getData(){
return this.data;
}
public void setLeft(BinNode l){
this.left = l;
}
public BinNode getLeft(){
return this.left;
}
public void setRight(BinNode r){
this.right = r;
}
public BinNode getRight(){
return this.right;
}
}

 

 

public class BinaryTree
{
private BinNode root;
private BinNode curr;

/* Function to traverse right */
public void goRight() {
this.curr = this.curr.getRight();
}

public BinaryTree()
{
root = new BinNode();
curr = new BinNode();
}

public BinNode getRoot(){
return this.root;
}

/* Function to check if tree is empty */
public boolean isEmpty()
{
return this.root == null;
}
/* Functions to insert data */
public void insert(String data)
{
this.root = insert(this.root, data);
} //done
/* Function to insert data recursively */
private BinNode insert(BinNode node, String data)
{
if (node == null)
node = new BinNode(data);
else
{
int i = node.getData().compareTo(data);
if (i < 0) {
// Go right
node.setRight(insert(node.getRight(), data));
} else if (i >= 0) {
// Go left
node.setLeft(insert(node.getLeft(), data));
}
// write this!
}
return node;
}
/* Function to count number of nodes */
public int countNodes()
{
return countNodes(this.root);
}
/* Function to count number of nodes recursively */
private int countNodes(BinNode r)
{
if (r == null) {
return 0; // If the current node is null, there are no nodes to count.
}

int leftCount = countNodes(r.getLeft()); // Count nodes in the left subtree
int rightCount = countNodes(r.getRight()); // Count nodes in the right subtree

// Add 1 to count the current node itself
return 1 + leftCount + rightCount;
}
/* Function to search for an element */
public BinNode search(String val)
{
return search(this.root, val);
}
/* Function to search for an element recursively */
private BinNode search(BinNode r, String val)
{
// Base case: If the current node is null, the value is not found.
if (r == null) {
return null;
}

int comparison = val.compareTo(r.getData());

if (comparison < 0) {
// Value is smaller, so search in the left subtree.
return search(r.getLeft(), val);
} else if (comparison > 0) {
// Value is larger, so search in the right subtree.
return search(r.getRight(), val);
} else {
// Value is equal to the current node's data, so it's found.
//this.curr = r;
return r;
}
}
/* Function for inorder traversal */
public void inorder()
{
inorder(this.root);
}
private void inorder(BinNode r)
{
if (r != null)
{
inorder(r.getLeft());
System.out.print(r.getData() +" ");
inorder(r.getRight());
}
}
/* Function for preorder traversal */
public void preorder()
{
preorder(root);
}
private void preorder(BinNode r)
{
if (r != null)
{
System.out.print(r.getData() +" ");
preorder(r.getLeft());
preorder(r.getRight());
}
}
/* Function for postorder traversal */
public void postorder()
{
postorder(root);
}
private void postorder(BinNode r)
{
if (r != null)
{
postorder(r.getLeft());
postorder(r.getRight());
System.out.print(r.getData() +" ");
}
}


// find the in-order successor of a given node
public BinNode findInorderSuccessor(BinNode node) {
BinNode current = node.getRight();

while (current.getLeft() != null) {
current = current.getLeft();
}

return current;
}

//Remove function
public void remove(String key) {
// Find the node to be removed and its parent
BinNode parent = null;
BinNode n = this.root;
while (n != null && !n.getData().equals(key)) {
parent = n;
if (key.compareTo(n.getData()) < 0) {
n = n.getLeft();
} else {
n = n.getRight();
}
}

if (n == null) {
// Key not found, nothing to remove
return;
}

// Case 1: Node with no children
if (n.getLeft() == null && n.getRight() == null) {
if (parent == null) {
// Removing the root node
this.root = null;
} else if (parent.getLeft() == n) {
parent.setLeft(null);
} else {
parent.setRight(null);
}
}
// Case 2: Node with one child
else if (n.getLeft() == null || n.getRight() == null) {
BinNode child = (n.getLeft() != null) ? n.getLeft() : n.getRight();
if (n == this.root) {
this.root = child;
} else if (parent.getLeft() == n) {
parent.setLeft(child);
} else {
parent.setRight(child);
}
}
// Case 3: Node with two children
else {
BinNode successor = findInorderSuccessor(n);
n.setData(successor.getData());
remove(successor.getData()); // Recursively remove the successor
}
}


}

Expert Solution
Step 1: Introduction

To implement a Red-Black Tree in Java that inherits from your Binary Tree, we will need to modify our classes and add the necessary methods to maintain the properties of a Red-Black Tree. Here's a modified version of our code with the Red-Black Tree structure

steps

Step by step

Solved in 5 steps

Blurred answer
Knowledge Booster
Binary Tree
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education