Electronic Effects
The effect of electrons that are located in the chemical bonds within the atoms of the molecule is termed an electronic effect. The electronic effect is also explained as the effect through which the reactivity of the compound in one portion is controlled by the electron repulsion or attraction producing in another portion of the molecule.
Drawing Resonance Forms
In organic chemistry, resonance may be a mental exercise that illustrates the delocalization of electrons inside molecules within the valence bond theory of octet bonding. It entails creating several Lewis structures that, when combined, reflect the molecule's entire electronic structure. One Lewis diagram cannot explain the bonding (lone pair, double bond, octet) elaborately. A hybrid describes a combination of possible resonance structures that represents the entire delocalization of electrons within the molecule.
Using Molecular Structure To Predict Equilibrium
Equilibrium does not always imply an equal presence of reactants and products. This signifies that the reaction reaches a point when reactant and product quantities remain constant as the rate of forward and backward reaction is the same. Molecular structures of various compounds can help in predicting equilibrium.
- Aromaticity is a chemical property of organic compound.
- Aromatic compounds have characteristics like,
- It has high degree of stability.
- It shows electrophilic substitution reaction rather than electrophilic addition reaction.
- Delocalization of electrons
- aromatic compounds follows Huckel rule. According to which a cyclic planar conjugated species having (4n+2) π electrons ( where n= 0, 1, 2,...) is aromatic in nature.
- Each atom must be SP2 hybridized or SP hybridized i.e. planar system.
- In short, cyclic, planar, conjugated systems which have odd number of π bonds are aromatic in nature.
- For example benzene, benzene has 3 π bonds .
Anti-aromatic compounds:-
- Cyclic
- Delocalization of electrons
- Planar
- 4n π electrons system, n =1, 2, ...
- Have even number of π bonds.
- Example cyclobutadiene
Non-aromatic compounds
- Cyclic
- No delocalization of electrons
- non-planar
- Huckel rule not applicable.
Step by step
Solved in 4 steps with 2 images