is this code correct for gradient descent for two vectors (two dimensions)? **************************************** import numpy as np from matplotlib import pyplot as plt class GradientDescent: def __init__(self, function, gradient, initial_solution, learning_rate=0.1, max_iter=100, tolerance=0.0000001): self.function = function self.gradient = gradient self.solution = initial_solution self.learning_rate = learning_rate self.max_iter = max_iter

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question

is this code correct for gradient descent for two vectors (two dimensions)?

****************************************

import numpy as np
from matplotlib import pyplot as plt

class GradientDescent:
def __init__(self, function, gradient, initial_solution, learning_rate=0.1, max_iter=100, tolerance=0.0000001):
self.function = function
self.gradient = gradient
self.solution = initial_solution
self.learning_rate = learning_rate
self.max_iter = max_iter
self.tolerance = tolerance
  
def run(self):
t = 0
while t < self.max_iter:
diff = -self.learning_rate * self.gradient(*self.solution)
if np.linalg.norm(diff) < self.tolerance:
break
self.solution = tuple([self.solution[i] + diff[i] for i in range(len(diff))])
t += 1
return self.solution, self.function(*self.solution)

def fun1(x, y):
return x ** 2 + y ** 2

def gradient1(x, y):
return np.array([2 * x, 2 * y])

bounds = [-3, 3]

plt.figure()

x, y = np.meshgrid(np.linspace(bounds[0], bounds[1], 100), np.linspace(bounds[0], bounds[1], 100))
z = fun1(x, y)
plt.contour(x, y, z,levels=20)

random_solution = np.random.uniform(bounds[0], bounds[1], size=2)

gd = GradientDescent(fun1, gradient1, random_solution)

best_solution, best_value = gd.run()

plt.plot(best_solution[0], best_solution[1])

Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Polynomial time
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education