Instructions to follow: * Give original work *Support your work with examples and graphs where required * Follow The references: Kreyszig, Rudin and Robert. G. Bartle. Reference Books: C.D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, 3rd Edition, Harcourt Asia, (2000) J. Bak and D.J. Newman, Complex Analysis, 2nd Edition, Springer Indian Reprint, (2009) Bartle and Sherbert, Introductory Real Analysis, 3rd edition, Wiley International, (2001) E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Singapore Edition, (2001). S. Kumaresan, Topology of Metric Spaces, Narosa, (2005). S. Kumaresan, Real Analysis An Ouiline, Unpublished Course Notes (available at http://atts.org.in/downloads) B.V. Limaye, Functional Analysis, 2nd Edition, New Age International Ltd., (1996). W. Rudin, Real and Complex Analysis, TMH Edition, 1973. Throughout these notes, we let KKR or K = C. We use the symbol, for example, f(x)= r² to say that the function f is defined by setting f(x) = x² for all in the domain. This is same as writing f(x) of 22. Can you guess what the symbol 2 f(x) means? LIIS IS means that RIIS is defined by LIIS. I started with the principle that a first course in functional analysis is meant first as a part of the general culture and second as an important tool for any future analyst. Ilence the emphasis all through had been to look at concrete spaces of function and linear maps between them. This has two advantages: (1) the students get to see the typical applications of the results of functional analysis to other parts of analysis and (2) while dealing with such 21. Bounded Approximation Property in Banach Spaces Let X be a Banach space. We say that X has the bounded approximation property if, for every compact subset KCX and every > 0, there exists a finite-rank operator T: XX such that ||Tx-x||

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter7: Analytic Trigonometry
Section7.6: The Inverse Trigonometric Functions
Problem 91E
icon
Related questions
Question
Instructions to follow:
* Give original work
*Support your work with examples and graphs where required
* Follow The references: Kreyszig, Rudin and Robert. G. Bartle.
Reference Books:
C.D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, 3rd Edition, Harcourt Asia,
(2000)
J. Bak and D.J. Newman, Complex Analysis, 2nd Edition, Springer Indian Reprint, (2009)
Bartle and Sherbert, Introductory Real Analysis, 3rd edition, Wiley International, (2001)
E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Singapore Edition,
(2001).
S. Kumaresan, Topology of Metric Spaces, Narosa, (2005).
S. Kumaresan, Real Analysis An Ouiline, Unpublished Course Notes
(available at http://atts.org.in/downloads)
B.V. Limaye, Functional Analysis, 2nd Edition, New Age International Ltd., (1996).
W. Rudin, Real and Complex Analysis, TMH Edition, 1973.
Throughout these notes, we let KKR or K = C. We use the symbol, for example,
f(x)= r² to say that the function f is defined by setting f(x) = x² for all in the domain.
This is same as writing f(x) of 22. Can you guess what the symbol 2 f(x) means?
LIIS IS means that RIIS is defined by LIIS.
I started with the principle that a first course in functional analysis is meant first as a
part of the general culture and second as an important tool for any future analyst. Ilence
the emphasis all through had been to look at concrete spaces of function and linear maps
between them. This has two advantages: (1) the students get to see the typical applications
of the results of functional analysis to other parts of analysis and (2) while dealing with such
21. Bounded Approximation Property in Banach Spaces
Let X be a Banach space. We say that X has the bounded approximation property if, for every
compact subset KCX and every > 0, there exists a finite-rank operator T: XX such that
||Tx-x||<e for all x € K. Prove that if X has a Schauder basis, then X has the bounded
approximation property. Provide examples of spaces with and without the bounded approximation
property.
⚫ Hint: Use the properties of Schauder bases to construct finite-rank approximations, and explore
Land L as examples.
22. Fredholm Alternative for Compact Operators
Let T: XX be a compact operator on a Banach space X. Prove the Fredholm Alternative:
either T - XI is invertible for all A0, or there exists a nonzero Aσ(T) such that A is an
eigenvalue of T. Show how this result applies to integral operators on 12 ([a, b]).
⚫ Hint: Consider the structure of the spectrum of compact operators and the implications of non-
invertibility.
Transcribed Image Text:Instructions to follow: * Give original work *Support your work with examples and graphs where required * Follow The references: Kreyszig, Rudin and Robert. G. Bartle. Reference Books: C.D. Aliprantis and O. Burkinshaw, Principles of Real Analysis, 3rd Edition, Harcourt Asia, (2000) J. Bak and D.J. Newman, Complex Analysis, 2nd Edition, Springer Indian Reprint, (2009) Bartle and Sherbert, Introductory Real Analysis, 3rd edition, Wiley International, (2001) E. Kreyszig, Introductory Functional Analysis with Applications, Wiley Singapore Edition, (2001). S. Kumaresan, Topology of Metric Spaces, Narosa, (2005). S. Kumaresan, Real Analysis An Ouiline, Unpublished Course Notes (available at http://atts.org.in/downloads) B.V. Limaye, Functional Analysis, 2nd Edition, New Age International Ltd., (1996). W. Rudin, Real and Complex Analysis, TMH Edition, 1973. Throughout these notes, we let KKR or K = C. We use the symbol, for example, f(x)= r² to say that the function f is defined by setting f(x) = x² for all in the domain. This is same as writing f(x) of 22. Can you guess what the symbol 2 f(x) means? LIIS IS means that RIIS is defined by LIIS. I started with the principle that a first course in functional analysis is meant first as a part of the general culture and second as an important tool for any future analyst. Ilence the emphasis all through had been to look at concrete spaces of function and linear maps between them. This has two advantages: (1) the students get to see the typical applications of the results of functional analysis to other parts of analysis and (2) while dealing with such 21. Bounded Approximation Property in Banach Spaces Let X be a Banach space. We say that X has the bounded approximation property if, for every compact subset KCX and every > 0, there exists a finite-rank operator T: XX such that ||Tx-x||<e for all x € K. Prove that if X has a Schauder basis, then X has the bounded approximation property. Provide examples of spaces with and without the bounded approximation property. ⚫ Hint: Use the properties of Schauder bases to construct finite-rank approximations, and explore Land L as examples. 22. Fredholm Alternative for Compact Operators Let T: XX be a compact operator on a Banach space X. Prove the Fredholm Alternative: either T - XI is invertible for all A0, or there exists a nonzero Aσ(T) such that A is an eigenvalue of T. Show how this result applies to integral operators on 12 ([a, b]). ⚫ Hint: Consider the structure of the spectrum of compact operators and the implications of non- invertibility.
Expert Solution
steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt