4. (a) Find the greatest common divisor of a = 12345 and b = 54321 and express it as a linear combination of a and b. (b) Find integers x, y such that 12345x + 54321y = 9. (c) Find the least common multiple of a = 12345 and b = 54321. 1. (a) Find and express the greatest common divisor of 48 and 126 as a linear combination of these numbers. let α = 126 and b=48 2 48√126 96 30 30√48 30 12/27/28/0-180/2 -12dro 1₁ = 30 = a- =a-2b √2=18= 48-1.30 18 √30 13=12= 12V 18 ① = b - (a-2b) = -a+3b ① 30-1.18 Д = a-2b- (-a+3b) = 29-56 ① 14= 6 = 18 1.12 - =-a+3b-(2a-5b) = -39+86 =6 √5=0 12 and 126.48)= 6=-3(126) +8 (48) ①

Algebra: Structure And Method, Book 1
(REV)00th Edition
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Chapter5: Factoring Polynomials
Section5.7: Factoring Pattern For X2+bx+c, C Positive
Problem 5OE
icon
Related questions
Question

Please solve like this if possible on paper also I have provided the sample, Please follow this,Thank you

4. (a) Find the greatest common divisor of a = 12345 and b = 54321 and express it as a
linear combination of a and b.
(b) Find integers x, y such that 12345x + 54321y = 9.
(c) Find the least common multiple of a = 12345 and b = 54321.
Transcribed Image Text:4. (a) Find the greatest common divisor of a = 12345 and b = 54321 and express it as a linear combination of a and b. (b) Find integers x, y such that 12345x + 54321y = 9. (c) Find the least common multiple of a = 12345 and b = 54321.
1. (a) Find and express the greatest common divisor of 48 and 126 as a linear combination
of these numbers.
let α = 126 and b=48
2
48√126
96
30
30√48
30
12/27/28/0-180/2 -12dro
1₁ = 30 = a-
=a-2b
√2=18= 48-1.30
18 √30
13=12=
12V 18
①
= b - (a-2b) = -a+3b ①
30-1.18
Д
= a-2b- (-a+3b) = 29-56 ①
14= 6 =
18 1.12
-
=-a+3b-(2a-5b) = -39+86
=6
√5=0
12
and 126.48)= 6=-3(126) +8 (48) ①
Transcribed Image Text:1. (a) Find and express the greatest common divisor of 48 and 126 as a linear combination of these numbers. let α = 126 and b=48 2 48√126 96 30 30√48 30 12/27/28/0-180/2 -12dro 1₁ = 30 = a- =a-2b √2=18= 48-1.30 18 √30 13=12= 12V 18 ① = b - (a-2b) = -a+3b ① 30-1.18 Д = a-2b- (-a+3b) = 29-56 ① 14= 6 = 18 1.12 - =-a+3b-(2a-5b) = -39+86 =6 √5=0 12 and 126.48)= 6=-3(126) +8 (48) ①
Expert Solution
steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Recommended textbooks for you
Algebra: Structure And Method, Book 1
Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Glencoe Algebra 1, Student Edition, 9780079039897…
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
College Algebra (MindTap Course List)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning