Instructions: 1. Give geometric interpretation and graphs where required. 2. Give your original work. 3. Use the recommended references and books. Abbott H.L., Lower bounds for some Ramsey numbers. Discr. Math. 2 (1972), 289–293. [393] Abeledo H. and G. Isaak, A characterization of graphs that ensure the existence of a stable matching. Math. Soc. Sci. 22 (1991), 93-96. [136] Aberth O., On the sum of graphs. Rev. Fr. Rech. Opér. 33 (1964), 353-358. [194] Acharya B.D. and M. Las Vergnas, Hypergraphs with cyclomatic number zero, triangulated graphs, and an inequality. J. Comb. Th. B 33 (1982), 52-56. [327] Ahuja R.K., T.L. Magnanti, and J.B. Orlin, Network Flows. Prentice Hall (1993). [97, 145, 176, 180, 185, 190) Aigner M., Combinatorial Theory. Springer-Verlag (1979). [355, 360, 373] Aigner M., Graphentheorie. Eine Entwicklung aus dem 4-Farben Problem. B.G. Teubner Verlagsgesellschaft (1984) (English transl. BCS Assoc., 1987). [258] Ajtai M., V. Chvátal, M.M. Newborn and E. Szemerédi, Crossing-free subgraphs. Theory and practice of combinatorics, Ann. Discr. Math. 12 (1982), 9-12. [264] Ajtai M., J. Komlós, and E. Szemerédi, A note on Ramsey numbers. J. Comb. Th (A) 29 (1980), 354-360. [51, 385] Ajtai M., J. Komlós, and E. Szemerédi, Sorting in clog parallel steps. Combi natorica 3 (1983), 1-19. [463] Akiyama J., H. Era, S.V. Gervacio and M. Watanabe, Path chromatic numbers of graphs. J. Graph Th. 13 (1989), 569-575. [271] Akiyama J, and F. Harary, A graph and its complement with specified properties, IV: Counting self-complementary blocks. J. Graph Th. 5 (1981), 103-107. [32] Albertson M.O. and E.H. Moore, Extending graph colorings. J. Comb. Th. (B) 77 (1999), 83-95. [204] Alekseev V.B. and V.S. Gončakov, The thickness of an arbitrary complete graph (Russian). Mat. Sb. (N.S.) 101(143) (1976), 212-230. [271] No AI, AI means Downvote. Problem 5: Hyperbolic Surfaces and Graph Embeddings Hyperbolic geometry provides unique challenges for embedding graphs on surfaces with constant negative curvature. 1. Hyperbolic Surface Embedding: Prove that a triangulated graph can be embedded in a hyperbolic surface of genus g such that all edges are geodesics. Determine how the sum of the angles in each triangle changes compared to Euclidean or spherical surfaces. ⚫ Given a regular n-gon on a hyperbolic plane, find an embedding method for a graph that connects the vertices without any edge intersections. Describe the conditions needed for such an embedding. 2. Curvature and Graph Properties: • For a graph embedded in a hyperbolic surface, derive how the curvature affects the graph's degree sequence and connectivity. Show that any hyperbolic surface with genus g≥2 can support an infinite number of non- isomorphic embedded graphs. Explain why this phenomenon does not occur in Euclidean or spherical geometries.

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter4: Polynomial And Rational Functions
Section4.1: Polynomial Functions Of Degree Greater Than
Problem 54E
icon
Related questions
Question
Instructions:
1. Give geometric interpretation and graphs where required.
2. Give your original work.
3. Use the recommended references and books.
Abbott H.L., Lower bounds for some Ramsey numbers. Discr. Math. 2 (1972),
289–293.
[393]
Abeledo H. and G. Isaak, A characterization of graphs that ensure the existence
of a stable matching. Math. Soc. Sci. 22 (1991), 93-96.
[136]
Aberth O., On the sum of graphs. Rev. Fr. Rech. Opér. 33 (1964), 353-358. [194]
Acharya B.D. and M. Las Vergnas, Hypergraphs with cyclomatic number zero,
triangulated graphs, and an inequality. J. Comb. Th. B 33 (1982), 52-56. [327]
Ahuja R.K., T.L. Magnanti, and J.B. Orlin, Network Flows. Prentice Hall (1993).
[97, 145, 176, 180, 185, 190)
Aigner M., Combinatorial Theory. Springer-Verlag (1979). [355, 360, 373]
Aigner M., Graphentheorie. Eine Entwicklung aus dem 4-Farben Problem. B.G.
Teubner Verlagsgesellschaft (1984) (English transl. BCS Assoc., 1987). [258]
Ajtai M., V. Chvátal, M.M. Newborn and E. Szemerédi, Crossing-free subgraphs.
Theory and practice of combinatorics, Ann. Discr. Math. 12 (1982), 9-12. [264]
Ajtai M., J. Komlós, and E. Szemerédi, A note on Ramsey numbers. J. Comb. Th
(A) 29 (1980), 354-360.
[51, 385]
Ajtai M., J. Komlós, and E. Szemerédi, Sorting in clog parallel steps. Combi
natorica 3 (1983), 1-19.
[463]
Akiyama J., H. Era, S.V. Gervacio and M. Watanabe, Path chromatic numbers
of graphs. J. Graph Th. 13 (1989), 569-575.
[271]
Akiyama J, and F. Harary, A graph and its complement with specified properties,
IV: Counting self-complementary blocks. J. Graph Th. 5 (1981), 103-107. [32]
Albertson M.O. and E.H. Moore, Extending graph colorings. J. Comb. Th. (B) 77
(1999), 83-95.
[204]
Alekseev V.B. and V.S. Gončakov, The thickness of an arbitrary complete graph
(Russian). Mat. Sb. (N.S.) 101(143) (1976), 212-230.
[271]
No AI, AI means Downvote.
Problem 5: Hyperbolic Surfaces and Graph Embeddings
Hyperbolic geometry provides unique challenges for embedding graphs on surfaces with constant
negative curvature.
1. Hyperbolic Surface Embedding:
Prove that a triangulated graph can be embedded in a hyperbolic surface of genus g such
that all edges are geodesics. Determine how the sum of the angles in each triangle changes
compared to Euclidean or spherical surfaces.
⚫ Given a regular n-gon on a hyperbolic plane, find an embedding method for a graph that
connects the vertices without any edge intersections. Describe the conditions needed for
such an embedding.
2. Curvature and Graph Properties:
• For a graph embedded in a hyperbolic surface, derive how the curvature affects the graph's
degree sequence and connectivity.
Show that any hyperbolic surface with genus g≥2 can support an infinite number of non-
isomorphic embedded graphs. Explain why this phenomenon does not occur in Euclidean
or spherical geometries.
Transcribed Image Text:Instructions: 1. Give geometric interpretation and graphs where required. 2. Give your original work. 3. Use the recommended references and books. Abbott H.L., Lower bounds for some Ramsey numbers. Discr. Math. 2 (1972), 289–293. [393] Abeledo H. and G. Isaak, A characterization of graphs that ensure the existence of a stable matching. Math. Soc. Sci. 22 (1991), 93-96. [136] Aberth O., On the sum of graphs. Rev. Fr. Rech. Opér. 33 (1964), 353-358. [194] Acharya B.D. and M. Las Vergnas, Hypergraphs with cyclomatic number zero, triangulated graphs, and an inequality. J. Comb. Th. B 33 (1982), 52-56. [327] Ahuja R.K., T.L. Magnanti, and J.B. Orlin, Network Flows. Prentice Hall (1993). [97, 145, 176, 180, 185, 190) Aigner M., Combinatorial Theory. Springer-Verlag (1979). [355, 360, 373] Aigner M., Graphentheorie. Eine Entwicklung aus dem 4-Farben Problem. B.G. Teubner Verlagsgesellschaft (1984) (English transl. BCS Assoc., 1987). [258] Ajtai M., V. Chvátal, M.M. Newborn and E. Szemerédi, Crossing-free subgraphs. Theory and practice of combinatorics, Ann. Discr. Math. 12 (1982), 9-12. [264] Ajtai M., J. Komlós, and E. Szemerédi, A note on Ramsey numbers. J. Comb. Th (A) 29 (1980), 354-360. [51, 385] Ajtai M., J. Komlós, and E. Szemerédi, Sorting in clog parallel steps. Combi natorica 3 (1983), 1-19. [463] Akiyama J., H. Era, S.V. Gervacio and M. Watanabe, Path chromatic numbers of graphs. J. Graph Th. 13 (1989), 569-575. [271] Akiyama J, and F. Harary, A graph and its complement with specified properties, IV: Counting self-complementary blocks. J. Graph Th. 5 (1981), 103-107. [32] Albertson M.O. and E.H. Moore, Extending graph colorings. J. Comb. Th. (B) 77 (1999), 83-95. [204] Alekseev V.B. and V.S. Gončakov, The thickness of an arbitrary complete graph (Russian). Mat. Sb. (N.S.) 101(143) (1976), 212-230. [271] No AI, AI means Downvote. Problem 5: Hyperbolic Surfaces and Graph Embeddings Hyperbolic geometry provides unique challenges for embedding graphs on surfaces with constant negative curvature. 1. Hyperbolic Surface Embedding: Prove that a triangulated graph can be embedded in a hyperbolic surface of genus g such that all edges are geodesics. Determine how the sum of the angles in each triangle changes compared to Euclidean or spherical surfaces. ⚫ Given a regular n-gon on a hyperbolic plane, find an embedding method for a graph that connects the vertices without any edge intersections. Describe the conditions needed for such an embedding. 2. Curvature and Graph Properties: • For a graph embedded in a hyperbolic surface, derive how the curvature affects the graph's degree sequence and connectivity. Show that any hyperbolic surface with genus g≥2 can support an infinite number of non- isomorphic embedded graphs. Explain why this phenomenon does not occur in Euclidean or spherical geometries.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage