ing techniques from Chapter 5, we can show that det(C) = -59. Since the minant of the coefficient matrix C is nonzero, it follows from Theorem 5.7 (the Big rem, Version 7) in Section 5.2 that our linear system has only the trivial solution. efore V is a linearly independent set and is a basis for P. DAVID I the set V could pos- 10, VRx2 11. V- ((1,0, 0, 0, 0, ...), (1,-1, 0, 0, 0, ...) (1,-1, 1, 0,0,.), (1,-1, 1,-1,0,...),. ., VR 12. (1, x+ 1, x+x+1, x+ x2+ x+ 1. ). V=P V P VR2 For Exercises 13-18, find a basis for the subspace S and determine dim(S). 13. S is the subspace of R consisting of matrices with trace equal to zero, (The trace is the sum of the diagonal terms of a matrix.) VRx2 14. S is the subspace of P2 consisting of polynomials with graphs crossing the origin. 15. S is the subspace of R2x2 consisting of matrices with compo- basis for V. nents that add to zero. 16. S is the subspace of T(2, 2) consisting of linear transforma- tions T: R R2 such that T (x) = ax for some scalar a. + 1, V= P 17. S is the subspace of T(2, 2) consisting of linear transforma- tions T: R VRx2 R such that T(v) = 0 for a specific vector v.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

For Problem #12, how do I prove that the set is a basis for V? I think that infinity is the basis, but I'm not sure. This is a Linear Algebra type of question. Here is a picture.

ing techniques from Chapter 5, we can show that det(C) = -59. Since the
minant of the coefficient matrix C is nonzero, it follows from Theorem 5.7 (the Big
rem, Version 7) in Section 5.2 that our linear system has only the trivial solution.
efore V is a linearly independent set and is a basis for P.
DAVID I
the set V could pos-
10,
VRx2
11. V- ((1,0, 0, 0, 0, ...), (1,-1, 0, 0, 0, ...)
(1,-1, 1, 0,0,.), (1,-1, 1,-1,0,...),. ., VR
12. (1, x+ 1, x+x+1, x+ x2+ x+ 1. ). V=P
V P
VR2
For Exercises 13-18, find a basis for the subspace S and determine
dim(S).
13. S is the subspace of R consisting of matrices with trace
equal to zero, (The trace is the sum of the diagonal terms of a
matrix.)
VRx2
14. S is the subspace of P2 consisting of polynomials with graphs
crossing the origin.
15. S is the subspace of R2x2 consisting of matrices with compo-
basis for V.
nents that add to zero.
16. S is the subspace of T(2, 2) consisting of linear transforma-
tions T: R R2 such that T (x) = ax for some scalar a.
+ 1, V= P
17. S is the subspace of T(2, 2) consisting of linear transforma-
tions T: R
VRx2
R such that T(v) = 0 for a specific vector v.
Transcribed Image Text:ing techniques from Chapter 5, we can show that det(C) = -59. Since the minant of the coefficient matrix C is nonzero, it follows from Theorem 5.7 (the Big rem, Version 7) in Section 5.2 that our linear system has only the trivial solution. efore V is a linearly independent set and is a basis for P. DAVID I the set V could pos- 10, VRx2 11. V- ((1,0, 0, 0, 0, ...), (1,-1, 0, 0, 0, ...) (1,-1, 1, 0,0,.), (1,-1, 1,-1,0,...),. ., VR 12. (1, x+ 1, x+x+1, x+ x2+ x+ 1. ). V=P V P VR2 For Exercises 13-18, find a basis for the subspace S and determine dim(S). 13. S is the subspace of R consisting of matrices with trace equal to zero, (The trace is the sum of the diagonal terms of a matrix.) VRx2 14. S is the subspace of P2 consisting of polynomials with graphs crossing the origin. 15. S is the subspace of R2x2 consisting of matrices with compo- basis for V. nents that add to zero. 16. S is the subspace of T(2, 2) consisting of linear transforma- tions T: R R2 such that T (x) = ax for some scalar a. + 1, V= P 17. S is the subspace of T(2, 2) consisting of linear transforma- tions T: R VRx2 R such that T(v) = 0 for a specific vector v.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Vector Space
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,