Incorrect Your answer is incorrect. Rewrite sin 2cos as an algebraic expression in u. 4 :) - sin 2 cos ? olo

Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE: 1. Give the measures of the complement and the supplement of an angle measuring 35°.
Topic Video
Question
100%
### Problem Statement:

**Rewrite** \( \sin \left( 2 \cos^{-1} \dfrac{u}{4} \right) \) **as an algebraic expression in** \( u \).

### Solution:

We start with the given expression:

\[ \sin \left( 2 \cos^{-1} \dfrac{u}{4} \right) \]

### Explanation:

1. **Understanding Inverse Cosine**:
   - \( \cos^{-1}(y) \) returns the angle whose cosine is \( y \). So \( \cos(\cos^{-1}(y)) = y \).
   
2. **Double Angle Formula for Sine**:
   - The double angle formula for sine states: \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \).

3. **Using Substitution**:
   - Let \( \theta = \cos^{-1} \left( \dfrac{u}{4} \right) \), so \( \cos(\theta) = \dfrac{u}{4} \).

4. **Finding** \( \sin(\theta) \):
   - Using the Pythagorean identity: \( \sin^2(\theta) + \cos^2(\theta) = 1 \),
   - \( \sin^2(\theta) = 1 - \cos^2(\theta) = 1 - \left( \dfrac{u}{4} \right)^2 \).

   Thus:
   \[ \sin(\theta) = \sqrt{1 - \left( \dfrac{u}{4} \right)^2} \]

5. **Putting it Together**:
   - Now use the double angle formula:
   
     \[
     \sin(2\theta) = 2 \sin(\theta) \cos(\theta) 
     = 2 \left( \sqrt{1 - \left( \dfrac{u}{4} \right)^2} \right) \left( \dfrac{u}{4} \right)
     = \dfrac{2u}{4} \sqrt{1 - \left( \dfrac{u}{4} \right)^2}
     = \dfrac{u}{2} \sqrt{4 - u^2}
     \]

### Conclusion:

So, the algebra
Transcribed Image Text:### Problem Statement: **Rewrite** \( \sin \left( 2 \cos^{-1} \dfrac{u}{4} \right) \) **as an algebraic expression in** \( u \). ### Solution: We start with the given expression: \[ \sin \left( 2 \cos^{-1} \dfrac{u}{4} \right) \] ### Explanation: 1. **Understanding Inverse Cosine**: - \( \cos^{-1}(y) \) returns the angle whose cosine is \( y \). So \( \cos(\cos^{-1}(y)) = y \). 2. **Double Angle Formula for Sine**: - The double angle formula for sine states: \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \). 3. **Using Substitution**: - Let \( \theta = \cos^{-1} \left( \dfrac{u}{4} \right) \), so \( \cos(\theta) = \dfrac{u}{4} \). 4. **Finding** \( \sin(\theta) \): - Using the Pythagorean identity: \( \sin^2(\theta) + \cos^2(\theta) = 1 \), - \( \sin^2(\theta) = 1 - \cos^2(\theta) = 1 - \left( \dfrac{u}{4} \right)^2 \). Thus: \[ \sin(\theta) = \sqrt{1 - \left( \dfrac{u}{4} \right)^2} \] 5. **Putting it Together**: - Now use the double angle formula: \[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2 \left( \sqrt{1 - \left( \dfrac{u}{4} \right)^2} \right) \left( \dfrac{u}{4} \right) = \dfrac{2u}{4} \sqrt{1 - \left( \dfrac{u}{4} \right)^2} = \dfrac{u}{2} \sqrt{4 - u^2} \] ### Conclusion: So, the algebra
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Fundamentals of Trigonometric Identities
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Trigonometry (11th Edition)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Algebra and Trigonometry
Algebra and Trigonometry
Trigonometry
ISBN:
9781938168376
Author:
Jay Abramson
Publisher:
OpenStax
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning