Rewrite sin 2 cos as an algebraic expression in v. 4 sin 2 cos 4 믐 =
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Question
![**Rewrite the Expression**
**Topic**: Algebra and Trigonometry
**Objective**: Learn to rewrite \(\sin \left( 2 \cos^{-1} \frac{v}{4} \right)\) as an algebraic expression in \(v\).
### Problem Statement
Rewrite the following expression in terms of \(v\):
\[ \sin \left( 2 \cos^{-1} \frac{v}{4} \right) \]
### Transformation Steps
1. **Given Expression:**
\[ \sin \left( 2 \cos^{-1} \frac{v}{4} \right) = \sin \left( 2 \theta \right) \]
where \(\theta = \cos^{-1} \frac{v}{4}\).
2. **Use the Double-Angle Formula for Sine:**
\[ \sin (2 \theta) = 2 \sin \theta \cos \theta \]
3. **Identify \( \sin \theta \) and \( \cos \theta \):**
- By definition of \( \theta \),
\[ \cos \theta = \frac{v}{4} \]
- Use the Pythagorean identity:
\[ \sin^2 \theta + \cos^2 \theta = 1 \]
\[ \sin^2 \theta + \left( \frac{v}{4} \right)^2 = 1 \]
\[ \sin^2 \theta + \frac{v^2}{16} = 1 \]
\[ \sin^2 \theta = 1 - \frac{v^2}{16} \]
\[ \sin \theta = \sqrt{1 - \frac{v^2}{16}} \]
4. **Combine the Results:**
\[ \sin \left( 2 \cos^{-1} \frac{v}{4} \right) = 2 \left( \sqrt{1 - \frac{v^2}{16}} \right) \left( \frac{v}{4} \right) \]
\[ = 2 \left( \frac{v}{4} \sqrt{1 - \frac{v^2}{16}} \right) \]
\[ = \frac{v}{2}](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ff0b581ba-098c-432d-a731-9ec346ce3593%2Fa117a606-0381-4f7f-9240-a605eb17d6c1%2F5l3qm1g_processed.png&w=3840&q=75)
Transcribed Image Text:**Rewrite the Expression**
**Topic**: Algebra and Trigonometry
**Objective**: Learn to rewrite \(\sin \left( 2 \cos^{-1} \frac{v}{4} \right)\) as an algebraic expression in \(v\).
### Problem Statement
Rewrite the following expression in terms of \(v\):
\[ \sin \left( 2 \cos^{-1} \frac{v}{4} \right) \]
### Transformation Steps
1. **Given Expression:**
\[ \sin \left( 2 \cos^{-1} \frac{v}{4} \right) = \sin \left( 2 \theta \right) \]
where \(\theta = \cos^{-1} \frac{v}{4}\).
2. **Use the Double-Angle Formula for Sine:**
\[ \sin (2 \theta) = 2 \sin \theta \cos \theta \]
3. **Identify \( \sin \theta \) and \( \cos \theta \):**
- By definition of \( \theta \),
\[ \cos \theta = \frac{v}{4} \]
- Use the Pythagorean identity:
\[ \sin^2 \theta + \cos^2 \theta = 1 \]
\[ \sin^2 \theta + \left( \frac{v}{4} \right)^2 = 1 \]
\[ \sin^2 \theta + \frac{v^2}{16} = 1 \]
\[ \sin^2 \theta = 1 - \frac{v^2}{16} \]
\[ \sin \theta = \sqrt{1 - \frac{v^2}{16}} \]
4. **Combine the Results:**
\[ \sin \left( 2 \cos^{-1} \frac{v}{4} \right) = 2 \left( \sqrt{1 - \frac{v^2}{16}} \right) \left( \frac{v}{4} \right) \]
\[ = 2 \left( \frac{v}{4} \sqrt{1 - \frac{v^2}{16}} \right) \]
\[ = \frac{v}{2}
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.Recommended textbooks for you

Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON

Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning


Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON

Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning


Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning