#include #include #include using namespace std; class BalancedTernary { protected: // Store the value as a reversed string of +, 0 and - characters string value; // Helper function to change a balanced ternary character to an integer int charToInt(char c) const { if (c == '0') return 0; return 44 - c; } // Helper function to negate a string of ternary characters string negate(string s) const { for (int i = 0; i < s.length(); ++i) { if (s[i] == '+') s[i] = '-'; else if (s[i] == '-') s[i] = '+'; } return s; } public: // Default constructor BalancedTernary() { value = "0"; } // Construct from a string BalancedTernary(string s) { value = string(s.rbegin(), s.rend()); } // Construct from an integer BalancedTernary(long long n) { if (n == 0) { value = "0"; return; } bool neg = n < 0; if (neg) n = -n; value = ""; while (n != 0) { int r = n % 3; if (r == 0) value += "0"; else if (r == 1) value += "+"; else { value += "-"; ++n; } n /= 3; } if (neg) value = negate(value); } // Copy constructor BalancedTernary(const BalancedTernary & n) { value = n.value; } // Addition operators BalancedTernary operator + (BalancedTernary n) const { n += * this; return n; } BalancedTernary & operator += (const BalancedTernary & n) { static char * add = "0+-0+-0"; static char * carry = "--000++"; int lastNonZero = 0; char c = '0'; for (int i = 0; i < value.length() || i < n.value.length(); ++i) { char a = i < value.length() ? value[i] : '0'; char b = i < n.value.length() ? n.value[i] : '0'; int sum = charToInt(a) + charToInt(b) + charToInt(c) + 3; c = carry[sum]; if (i < value.length()) value[i] = add[sum]; else value += add[sum]; if (add[sum] != '0') lastNonZero = i; } if (c != '0') value += c; else value = value.substr(0, lastNonZero + 1); // Chop off leading zeroes return *this; } // Negation operator BalancedTernary operator - () const { BalancedTernary result; result.value = negate(value); return result; } // Subtraction operators BalancedTernary operator - (const BalancedTernary & n) const { return operator + (-n); } BalancedTernary & operator -= (const BalancedTernary & n) { return operator += (-n); } // Multiplication operators BalancedTernary operator * (BalancedTernary n) const { n *= * this; return n; } BalancedTernary & operator *= (const BalancedTernary & n) { BalancedTernary pos = * this; BalancedTernary neg = -pos; // Storing an extra copy to avoid negating repeatedly value = "0"; for (int i = 0; i < n.value.length(); ++i) { if (n.value[i] == '+') operator += (pos); else if (n.value[i] == '-') operator += (neg); pos.value = '0' + pos.value; neg.value = '0' + neg.value; } return *this; } // Stream output operator friend ostream & operator << (ostream & out, const BalancedTernary & n) { out << n.toString(); return out; } // Convert to string string toString() const { return string(value.rbegin(), value.rend()); } // Convert to integer long long toInt() const { long long result = 0; for (long long i = 0, pow = 1; i < value.length(); ++i, pow *= 3) result += pow * charToInt(value[i]); return result; } // Convert to integer if possible bool tryInt(long long & out) const { long long result = 0; bool ok = true; for (long long i = 0, pow = 1; i < value.length() && ok; ++i, pow *= 3) { if (value[i] == '+') { ok &= LLONG_MAX - pow >= result; // Clear ok if the result overflows result += pow; } else if (value[i] == '-') { ok &= LLONG_MIN + pow <= result; // Clear ok if the result overflows result -= pow; } } if (ok) out = result; return ok; } }; int main() { int num, num1, num2, num3; cout << "enter a: "; cin >> num; cout << "enter b: "; cin >> num1; cout << "enter c: "; cin >> num2; BalancedTernary a(num); BalancedTernary b(num1); BalancedTernary c(num2); cout << "a = " << a.toInt() << " = " << a.toInt() << endl; cout << "b = " << b.toInt() << " = " << b.toInt() << endl; cout << "c = " << c.toInt() << " = " << c.toInt() << endl; cout << "\n"; cout << a.toInt() << " = " << a.toInt() << endl; BalancedTernary z = c - a; cout << z.toInt() << " = " << c.toInt() << " - " << a.toInt() << endl; cout << c.toInt() << " = " << c.toInt() << endl; BalancedTernary y = c + a; cout << y.toInt() << " = " << c.toInt() << " + " << a.toInt() << endl; cout << "\n"; BalancedTernary d = a + b * c; cout << "a + b * c = " << d.toInt() << "=" << d.toInt() << endl; return 0; }
#include <iostream>
#include <string>
#include <climits>
using namespace std;
class BalancedTernary {
protected:
// Store the value as a reversed string of +, 0 and - characters
string value;
// Helper function to change a balanced ternary character to an integer
int charToInt(char c) const {
if (c == '0')
return 0;
return 44 - c;
}
// Helper function to negate a string of ternary characters
string negate(string s) const {
for (int i = 0; i < s.length(); ++i) {
if (s[i] == '+')
s[i] = '-';
else if (s[i] == '-')
s[i] = '+';
}
return s;
}
public:
// Default constructor
BalancedTernary() {
value = "0";
}
// Construct from a string
BalancedTernary(string s) {
value = string(s.rbegin(), s.rend());
}
// Construct from an integer
BalancedTernary(long long n) {
if (n == 0) {
value = "0";
return;
}
bool neg = n < 0;
if (neg)
n = -n;
value = "";
while (n != 0) {
int r = n % 3;
if (r == 0)
value += "0";
else if (r == 1)
value += "+";
else {
value += "-";
++n;
}
n /= 3;
}
if (neg)
value = negate(value);
}
// Copy constructor
BalancedTernary(const BalancedTernary & n) {
value = n.value;
}
// Addition operators
BalancedTernary operator + (BalancedTernary n) const {
n += * this;
return n;
}
BalancedTernary & operator += (const BalancedTernary & n) {
static char * add = "0+-0+-0";
static char * carry = "--000++";
int lastNonZero = 0;
char c = '0';
for (int i = 0; i < value.length() || i < n.value.length(); ++i) {
char a = i < value.length() ? value[i] : '0';
char b = i < n.value.length() ? n.value[i] : '0';
int sum = charToInt(a) + charToInt(b) + charToInt(c) + 3;
c = carry[sum];
if (i < value.length())
value[i] = add[sum];
else
value += add[sum];
if (add[sum] != '0')
lastNonZero = i;
}
if (c != '0')
value += c;
else
value = value.substr(0, lastNonZero + 1); // Chop off leading zeroes
return *this;
}
// Negation operator
BalancedTernary operator - () const {
BalancedTernary result;
result.value = negate(value);
return result;
}
// Subtraction operators
BalancedTernary operator - (const BalancedTernary & n) const {
return operator + (-n);
}
BalancedTernary & operator -= (const BalancedTernary & n) {
return operator += (-n);
}
// Multiplication operators
BalancedTernary operator * (BalancedTernary n) const {
n *= * this;
return n;
}
BalancedTernary & operator *= (const BalancedTernary & n) {
BalancedTernary pos = * this;
BalancedTernary neg = -pos; // Storing an extra copy to avoid negating repeatedly
value = "0";
for (int i = 0; i < n.value.length(); ++i) {
if (n.value[i] == '+')
operator += (pos);
else if (n.value[i] == '-')
operator += (neg);
pos.value = '0' + pos.value;
neg.value = '0' + neg.value;
}
return *this;
}
// Stream output operator
friend ostream & operator << (ostream & out,
const BalancedTernary & n) {
out << n.toString();
return out;
}
// Convert to string
string toString() const {
return string(value.rbegin(), value.rend());
}
// Convert to integer
long long toInt() const {
long long result = 0;
for (long long i = 0, pow = 1; i < value.length(); ++i, pow *= 3)
result += pow * charToInt(value[i]);
return result;
}
// Convert to integer if possible
bool tryInt(long long & out) const {
long long result = 0;
bool ok = true;
for (long long i = 0, pow = 1; i < value.length() && ok; ++i, pow *= 3) {
if (value[i] == '+') {
ok &= LLONG_MAX - pow >= result; // Clear ok if the result overflows
result += pow;
} else if (value[i] == '-') {
ok &= LLONG_MIN + pow <= result; // Clear ok if the result overflows
result -= pow;
}
}
if (ok)
out = result;
return ok;
}
};
int main() {
int num, num1, num2, num3;
cout << "enter a: ";
cin >> num;
cout << "enter b: ";
cin >> num1;
cout << "enter c: ";
cin >> num2;
BalancedTernary a(num);
BalancedTernary b(num1);
BalancedTernary c(num2);
cout << "a = " << a.toInt() << " = " << a.toInt() << endl;
cout << "b = " << b.toInt() << " = " << b.toInt() << endl;
cout << "c = " << c.toInt() << " = " << c.toInt() << endl;
cout << "\n";
cout << a.toInt() << " = " << a.toInt() << endl;
BalancedTernary z = c - a;
cout << z.toInt() << " = " << c.toInt() << " - " << a.toInt() << endl;
cout << c.toInt() << " = " << c.toInt() << endl;
BalancedTernary y = c + a;
cout << y.toInt() << " = " << c.toInt() << " + " << a.toInt() << endl;
cout << "\n";
BalancedTernary d = a + b * c;
cout << "a + b * c = " << d.toInt() << "=" << d.toInt() << endl;
return 0;
}
Can I get an clear explaination of this program with and
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 2 images