In this problem, we will go through the famous experiment led by Robert A. Millikan. The charge of electron that he calculated by this experiment is 0.6% off from the currently accepted value, that too due to the imprecise value of viscosity of air known at the time. This experiment demonstrates that the electric charge of the oil droplet is some integer multiple of electron charge - thereby establishing charge quantization as an experimental fact. mg It's a free body diagram. Here, we depict an oil droplet that is falling downwards due to gravity in an air medium. The droplet experiences an upward force due to air friction. When the two forces on the droplet balance, the droplet falls steadily with velocity v_d. Eq mg Now, we negatively charge the oil droplet and place it in between the charged plates. There is a voltage V = 9.31Volt between the plates and the separation between the plates is d = 1.94mm. Previously we have seen the droplet steadily falling downwards. Now, due to the electric force on the droplet, it starts to move upwards, towards the positive plate. Hence, there's a force downwards on the droplet due to the air friction, as we can see from the free body diagram above. When all the forces acting on the droplet balance, the droplet steadily moves upwards.
In this problem, we will go through the famous experiment led by Robert A. Millikan. The charge of electron that he calculated by this experiment is 0.6% off from the currently accepted value, that too due to the imprecise value of viscosity of air known at the time. This experiment demonstrates that the electric charge of the oil droplet is some integer multiple of electron charge - thereby establishing charge quantization as an experimental fact. mg It's a free body diagram. Here, we depict an oil droplet that is falling downwards due to gravity in an air medium. The droplet experiences an upward force due to air friction. When the two forces on the droplet balance, the droplet falls steadily with velocity v_d. Eq mg Now, we negatively charge the oil droplet and place it in between the charged plates. There is a voltage V = 9.31Volt between the plates and the separation between the plates is d = 1.94mm. Previously we have seen the droplet steadily falling downwards. Now, due to the electric force on the droplet, it starts to move upwards, towards the positive plate. Hence, there's a force downwards on the droplet due to the air friction, as we can see from the free body diagram above. When all the forces acting on the droplet balance, the droplet steadily moves upwards.
Related questions
Question
Please solve a,b & c.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps