In the vertical jump, an Kobe Bryant starts from a crouch and jumps upward to reach as high as possible. Even the best athletes spend little more than 1.00 ss in the air (their "hang time"). Treat Kobe as a particle and let ymaxymax be his maximum height above the floor. Note: this isn't the entire story since Kobe can twist and curl up in the air, but then we can no longer treat him as a particle. Hint: Find v0 to reach y_max in terms of g and y_max and recall the velocity at y_max is zero. Then find v1 to reach y_max/2 with the same kinematic equation. The time to reach y_max is obtained from v0=g (t), and the time to reach y_max/2 is given by v1-v0= -g(t1). Now, t1 is the time to reach y_max/2, and the quantity t-t1 is the time to go from y_max/2 to y_max. You want the ratio of (t-t1)/t1 To explain why he seems to hang in the air, calculate the ratio of the time he is above ymax/2ymax/2 moving up to the time it takes him to go from the floor to that height. You may ignore air resistance.
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
In the vertical jump, an Kobe Bryant starts from a crouch and jumps upward to reach as high as possible. Even the best athletes spend little more than 1.00 ss in the air (their "hang time"). Treat Kobe as a particle and let ymaxymax be his maximum height above the floor. Note: this isn't the entire story since Kobe can twist and curl up in the air, but then we can no longer treat him as a particle.
Hint: Find v0 to reach y_max in terms of g and y_max and recall the velocity at y_max is zero. Then find v1 to reach y_max/2 with the same
To explain why he seems to hang in the air, calculate the ratio of the time he is above ymax/2ymax/2 moving up to the time it takes him to go from the floor to that height. You may ignore air resistance.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 10 images