In the reality television show "Amazing Race," a contestant is firing 12 kg watermelons from a slingshot to hit targets down the field. The slingshot is stretched from its equilibrium length by a distance of 1.8 m, and the watermelon is at ground level, 0.3 m below the launch point. The targets are at ground level 14 m horizontally away from the launch point. Calculate the spring constant of the slingshot (in N/m). (Assume the angle that the watermelon's velocity makes with the horizontal at the launch point is the same as the angle the slingshot makes with the horizontal when pulled back. Also assume the equilibrium length of the slingshot is negligible.)

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
icon
Concept explainers
Question
In the reality television show "Amazing Race," a contestant is firing 12 kg watermelons from a slingshot to hit
targets down the field. The slingshot is stretched from its equilibrium length by a distance of 1.8 m, and the
watermelon is at ground level, 0.3 m below the launch point. The targets are at ground level 14 m horizontally
away from the launch point. Calculate the spring constant of the slingshot (in N/m). (Assume the angle that the
watermelon's velocity makes with the horizontal at the launch point is the same as the angle the slingshot
makes with the horizontal when pulled back. Also assume the equilibrium length of the slingshot is negligible.)
Transcribed Image Text:In the reality television show "Amazing Race," a contestant is firing 12 kg watermelons from a slingshot to hit targets down the field. The slingshot is stretched from its equilibrium length by a distance of 1.8 m, and the watermelon is at ground level, 0.3 m below the launch point. The targets are at ground level 14 m horizontally away from the launch point. Calculate the spring constant of the slingshot (in N/m). (Assume the angle that the watermelon's velocity makes with the horizontal at the launch point is the same as the angle the slingshot makes with the horizontal when pulled back. Also assume the equilibrium length of the slingshot is negligible.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Potential energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON